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Machine learning models to accelerate the
design of polymeric long-acting injectables

Pauric Bannigan1, Zeqing Bao1, Riley J. Hickman2,3,4, Matteo Aldeghi2,3,4,
Florian Häse 2,3,4, Alán Aspuru-Guzik 2,3,4,5,6,7,8 & Christine Allen 1,8

Long-acting injectables are considered one of the most promising therapeutic
strategies for the treatment of chronic diseases as they can afford improved
therapeutic efficacy, safety, and patient compliance. The use of polymer
materials in such a drug formulation strategy can offer unparalleled diversity
owing to the ability to synthesize materials with a wide range of properties.
However, the interplay between multiple parameters, including the physico-
chemical properties of the drug and polymer, make it very difficult to intui-
tively predict the performance of these systems. This necessitates the
development and characterization of a wide array of formulation candidates
through extensive and time-consuming in vitro experimentation. Machine
learning is enabling leap-step advances in a number of fields including drug
discovery andmaterials science. The current study takes a critical step towards
data-driven drug formulation development with an emphasis on long-acting
injectables. Here we show that machine learning algorithms can be used to
predict experimental drug release from these advanceddrug delivery systems.
We also demonstrate that these trained models can be used to guide the
design of new long acting injectables. The implementation of the described
data-driven approach has the potential to reduce the time and cost associated
with drug formulation development.

Long-acting injectables (LAI) are a class of advanced drug delivery
systems that are designed to release their cargo over extended per-
iods of time in order to achieve a prolonged therapeutic effect. LAIs
that are amenable to parenteral administration can confer several
advantages over conventional drug formulations, including
increased patient compliance and bioavailability of drug1. Moreover,
LAIs can be engineered to provide either local (e.g., Zilretta®) or
systemic (e.g., Lupron Depot®) drug exposure over a prolonged
period, making them ideal formulation strategies for the treatment
of chronic diseases2. The unparalleled chemical and physical

diversity afforded by these materials makes polymer-based LAIs a
particularly apt version of this drug delivery strategy. These systems
can be engineered to entrap drugs within a polymer matrix with
release occurring via various mechanisms, including erosion, diffu-
sion, or simultaneous erosion and diffusion3. In addition to achieving
sustained or controlled drug release, the encapsulation of drugs into
these polymeric matrices can often protect therapeutic cargo4. To
date, various polymer-based LAI technologies administered via the
intramuscular5, subcutaneous6, and intra-articular7 routes have
received regulatory approval (Fig. 1a).
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Despite the advantages associated with polymeric LAIs, their
translation frombench to bedside remains non-trivial. In the past two
decades, only about 30 polymeric LAI products have received reg-
ulatory approval, in contrast to the thousands of conventional oral
formulations approved in the same period3,8. Several pivotal chal-
lenges limit the development and clinical translation of polymeric
LAIs. Firstly, there are few biodegradable polymer materials that are
generally recognized as safe (GRAS) for parenteral administration. To
date, the polymeric LAIs that have received clinical approval are
largely based on a single polymer: poly(lactide-co-glycolide)
(PLGA)2,3,9. The use of a material, such as PLGA, with an established
safety profile, may accelerate the regulatory approval of new LAI
formulations. However, it is well recognized that drug-polymer
compatibility significantly influences the performance of a formula-
tion, including drug loading capacity, drug release, and stability10.
Given that each drug has its own unique physicochemical properties,
it is unlikely that any one polymer material is ideally suited for the
formulation of all drugs. Thus, reliance on the relatively small subset
of polymeric materials that have GRAS status likely restricts our
ability to develop polymer-based LAIs for many classes of drugs.
Moreover, for a given polymer material, there is a wide range of
variables that must be optimized during LAI preparation. Further-
more, changes to any of these variables have the potential to impact
formulation performance, and the net effect of such alterations
cannot be known a priori. Often, initially, promising formulations can
fail at various stages during development due to unwanted drug
release rates, making their re-formulation and re-evaluation neces-
sary (Fig. 1b). This trial-and-error-based approach represents a sig-
nificant bottleneck in LAI development11.

To date, several strategies have been investigated to inform
decision-making and expedite the drug formulation development
process. For instance, mathematical models have been used to
describe and greatly enhance our understanding of drug release
mechanisms12. However, the application of these empirical models is
limited to post hoc analysis of the in vitro drug release profiles of LAIs,
and they do not offer information on in vitro drug release from LAIs
a priori. More recently, molecular dynamics simulations have been
investigated13. These techniques have been useful in quantifying links
between drug release rates and formulation parameters (including
particle size anddrug loading levels)14.While the development of these
techniques is an active area of research, molecular scale simulations of
entire drug delivery systems are computationally intensive. These
approaches can be used to confer useful information on potential LAI
systems; however, they cannot currently be used in place of experi-
mental drug release assays14. Several studies have also investigated
machine learning (ML) approaches11.

The application of ML in the pharmaceutical sciences is generally
limited by a lack of available open-source datasets to train models11.
Past efforts to predict in vitro drug release from LAIs using ML have
exclusively considered neural network (NN) based models, and have
examined narrow application domains. For example, Szlęk et al. used
NNs to predict the drug release of proteins and peptides from PLGA-
based microparticles (MPs) using a dataset of 68 PLGA formulations
extracted from the literature15. Small molecule studies have also
employed NNs to predict drug release, and these have generally been
limited to less than 20 data instances16. The use of NNs for supervised
learning tasks in the low-data regime may be associated with an
increased risk of overfitting compared to alternative ML algorithms,

Fig. 1 | Schematic demonstrating traditional and data-driven formulation
development approaches for long-acting injectables (LAIs). a Selected routes of
administration for FDA-approved LAI formulations. b Typical trial-and-error loop
commonly employed during the development of LAIs termed “traditional LAI

formulation development”. cWorkflow employed in this study to train and analyze
machine learning (ML)models to accelerate the design of new LAI systems, termed
“Data-driven LAI formulation development”.
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such as tree-based models or Gaussian processes, which are usually
better suited for sparse data problems.

The current studypursued the investigation and refinement ofML
models for accurate prediction of fractional drug release from poly-
mericLAIs (Fig. 1c). To achieve this, we trainedandevaluated a series of
eleven different ML algorithms, including multiple linear regression
(MLR), MLR with least absolute shrinkage and selection operator reg-
ularization (lasso), partial least squares (PLS), decision tree (DT), ran-
dom forest (RF), light gradient boosting machine (LGBM), extreme
gradient boosting (XGB), natural gradient boosting (NGB), support
vector regressor (SVR), k-nearest neighbors (k-NN), andNN. The LGBM
model was found to have the best performance: predicting fractional
drug release with a high degree of accuracy.

Results and discussion
Model selection
The dataset used to train MLmodels was constructed from previously
published studies by our group and other research groups10,17–44. The
studies performed by our group included spherical and cylinder-
shaped polymeric LAIs10,18,38. Data from external sources were identi-
fied using the Web of Science search engine and the keyword combi-
nation “polymeric microparticle” and “drug delivery”17,19–37,39–44. In each
researcharticle selected for dataset construction, the in vitro releaseof
the drug from the respective formulation was characterized. The final
dataset was composed of descriptors for a range of small molecule
drugs, polymer materials, and LAIs, as well as the in vitro drug release
profiles and experimental conditions under which the drug release
profiles were generated. In total, this included 181 drug release profiles
with 3783 individual fractional release measurements for 43 unique
drug-polymer combinations. The LAIs were mostly formed from
commercially available polymers, such as PLGA, polylactic acid (PLA),
and polycaprolactone (PCL), of various molecular weights and lactide-
to-glycolide ratios (for PLGA systems). A visual representation of the
fractional drug release profiles for all formulationswithin the collected
dataset is shown in Supplementary Fig. 1. A summary of this dataset in
terms of drug–polymer combinations is included in Supplemen-
tary Fig. 2.

Seventeen molecular and physicochemical descriptors were
initially selected based on domain knowledge as input features to
describe the LAI formulations of the various MLmodels. This included
input features that described the physicochemical properties of the
drug, polymer and LAI system and features that accounted for
experimental conditions under which the in vitro release studies were
conducted. As shown in Supplementary Table 1, the models were
trained in such a way that for each drug release profile for a specific
LAI, only the input feature, the timepoint for drug release measure-
ments (Time), varied with all other input features remaining constant.
These included the drug’s molecular weight (Drug_MW), topical polar
surface area (Drug_TSPA), number of heteroatoms (Drug_NHA),melting
temperature (Drug_Tm), acid dissociation constant (Drug_pKa), and
calculated partition coefficient (Drug_LogP) as well as polymer mole-
cular weight (Polymer_MW), molar cross-linking ratio (CL_Ratio), and
lactide-to-glycolide ratio (LA/GA), the drug loading capacity of the LAI
expressed as a fraction (DLC), the initial drug-to-polymer ratio used to
prepare the LAIs (Initial D/M ratio), the surface area-to-volume ratio of
the LAI (SA-V), the percent of surfactant in the experimental release
media (SE), fractional drug release at 6 h (T =0.25), fractional drug
release at 12 h (T =0.5), and fractional drug release at 24 h (T = 1.0).

The selected panel of MLmodels was trained and evaluated using
a nested cross-validation strategy that included an inner loop (i.e.,
model training and hyperparameter tuning) and an outer loop (i.e.,
model evaluation). Briefly, for each ML model, 20% of the
drug–polymer groups in the dataset were randomly selected as a test
set. The remaining 80% were used for model development. Within the
inner loop, each model was subject to a hyperparameter optimization

procedure using group k-fold (k = 10) cross-validation. Model hyper-
parameters were tuned using a random grid search, where the objec-
tive function was the average model performance across these k-fold
groups of drug-polymer combinations. The range of model hyper-
parameters considered, as well as the final selected values, are shown
in Supplementary Tables 2–8. Following the selection of the “best”
hyperparameters within the inner loop, the model was then evaluated
on the test set within the outer loop. This nested cross-validation
strategy was implemented ten times for each ML model to determine
the average model performance across randomly generated test sets.
This cross-validation strategy resulted in some overlap for specific
drugs between the inner and outer loops, as well as a similar overlap
for specific polymers. However, grouping by drug–polymer combi-
nation ensured that there were no specific LAI systems (i.e.,
drug–polymer combinations) present in both the training/validation
(i.e., inner loop) and test (i.e., outer loop) sets, thus allowing for cross-
validation against drug–polymer based splits. In all cases, model per-
formance was assessed using mean absolute error (MAE), the average
absolute difference between predicted and experimental fractional
drug release values.

The overall predictive performance of each ML model on the
inner (i.e., training/validation) and outer (i.e., test) nested cross-
validation loops are summarized in Table 1. The results obtained for
each individual trial for all models are also shown in Supplementary
Tables 9–12. Overall, the predictive performance of the outer loop
largely reflected the respective accuracies found in the inner loop:
indicating good model fitting. Specifically, the tree-based ML models
were, on average,more accurate (MAE <0.16) than the linear, instance-
based, and deep learningmodels investigated. This is consistent with a
recent study demonstrating that tree-based models remain state-of-
the-art for medium-sized datasets (~10 K samples)45. The LGBMmodel
had the highest overall prediction accuracy, with MAE values of 0.125
(±0.039) and 0.114 (±0.036) obtained for the inner and outer loops,
respectively. Considering the MAE values across the various nested
cross-validation trials, the performance of the LGBM model appeared
to be closelymatchedbyRF, NGB, andXGBmodels. To better illustrate
the performance of these models, the absolute error values generated
for all predictions across the ten nested cross-validation trials are
summarized in Fig. 2. While the mean values for the LGBM, RF, NGB,
andXGBmodels are close, the deviation of absolute error values varied
between these forest-basedmodels.Overall, the LGBMmodel afforded
themost narrow distribution in absolute error values for the test data.
Therewas found to be a statistically significant difference between the
absolute error values generated by the LGBMmodel compared to the
other models (p <0.05). Thus, the LGBM model was selected for fur-
ther development.

For comparison, we also trained and evaluated a series of ML
models without any initial drug release measurements included as
input features (i.e., without the features T = 0.25, T =0.5, and T = 0.1).
Models that include initial experimental measurements as input are
referred to as few-shot models, and models without such inputs are
referred to as zero-shot models. Few-shot models necessitate the
measurement of the first few experimental points before the predic-
tions can be performed; however, the result is often a more accurate
model. In this study, it was found that the addition of initial drug
release measurements (i.e., few-shot models) resulted in better per-
formance than the corresponding models without these features
(Supplementary Tables 9–13, and Supplementary Fig. 3).

Model refinement
When trained using the 17 input features mentioned above, the LGBM
model was identified as themost accurate at predicting fractional drug
release. In general, input feature sets for ML models should be com-
prehensive and encode all relevant physical information to make
accurate predictions. The use of toomany, possibly irrelevant features
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can increase the risk of introducing spurious correlations between
individual features and observed release profiles which can eventually
degrade themodel’s generalizability. Thus, the 17-feature LGBMmodel
was assessed, refined, and optimized through agglomerative hier-
archical clustering analysis to identify potentially redundant input
features. The input features were arranged into a hierarchy of clusters
using the farthest neighbor clustering algorithm (Fig. 3 and Supple-
mentary Fig. 4).With this approach, strong correlationswereobserved
between the input features Drug_NHA, Drug_TPSA, and Drug_Mw
(>0.94), with Drug_NHA and Drug_TPSA displaying the strongest cor-
relation (0.99). A similar cluster of strong correlations was observed
between T =0.5, T =0.25, and T = 1.0 (>0.92), with T = 0.5 and T = 1.0
displaying the strongest correlation (0.97). Thus, there was some
redundancy between the 17 features. The performance of the LGBM
model was then assessed following the removal of select feature
clusters based on their linkage distances (Table 2 and Supplementary
Table 14). The optimal version of the LGBMmodel was determined to
be the model that could achieve the lowest MAE while minimizing the
number of features. This was identified to be a 15-feature LGBMmodelTa
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Fig. 2 | Summary of the overall predictive performance of the various ML
models represented as a box and whisker plot. The data represent the absolute
error (AE) obtained for fractional drug release predictions during nested cross-
validation (i.e., n = 10 trials). Each column represents the AE value for 8013 data
instances from the collective nested cross-validation test sets (light gray circles).
Themean absolute error (MAE) andmedian AE values for eachmodel are displayed
within the boxes as closed black circles, and black dashed lines, respectively. The
first and second quartiles are shownby the upper and lower edges of the respective
boxes. The whiskers extend to show the rest of the distribution, excluding points
determined to be “outliers” using the interquartile range method. Source data are
provided as a Source Data file.
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that did not include Drug_NHA or T = 0.5. Interestingly, despite the
strong correlation between Drug_TPSA, and Drug_Mw as well as
between T =0.5 and T = 1.0 it was found that the removal of any
additional feature clusters resulted in a reduction in model accuracy
(Table 2). In the case of Drug_NHA and Drug_TPSA, both values were
generated by RDKit (based on SMILES codes), and these predictions
may be incorrect and, therefore, irrelevant to the final model. For the
T = 0.5 and T = 1.0 features, there may not be a sufficient number of
fractional drug release values with meaningful differences at these
time points. This final 15-feature LGBM model was then analyzed and
deployed in a prospective study. To confirm that suitable hyperpara-
meters were selected for the 15-feature LGBM, the nested cross-
validation strategy was conducted again with this reduced number of
input features. The performance was consistent with that of the 17-
feature model, while the resulting hyperparameter configuration dif-
fered slightly.

Model interpretation
To illustrate the predicted fractional drug release profiles generatedby
the trained LGBM model, test set drug–polymer combinations were
extracted from the nested cross-validation and plotted against their
respective experimental drug release profiles (Fig. 4 and Supplemen-
tary Fig. 5). Figure 4a shows the predicted and experimental drug
release profiles for select LAIs from the dataset. Overall, there was
good agreement between the predicted and experimental drug release
profiles. The importance of the various input features in generating
such fractional drug release predictions was then determined via
Shapley additive explanation (SHAP) analysis of the final 15-feature
LGBMmodel. Figure 4b shows the global contribution of each feature
in terms of SHAP values. In Fig. 4b, the input features are arranged
from top to bottom in order of decreasing the impact on model out-
put. Time is listed in the top row, indicating that it had the greatest
impact on the fractional drug releasepredictions. In addition, each row
of the swarm plot in Fig. 4b also depicts an individual dot plot, with
each dot representing a separate instance in the dataset. Blue dots
indicate lower values for that feature in the dataset, while pink dots
represent higher values. For example, blue dots in the Time row
represent low values for drug release timepoints, while pink dots in the
Polymer_MW row represent instances for LAIs composed of polymers
with higher molecular weights in the dataset. The distance between an
individual dot and the gray vertical central line reflects the extent to
which that fractional drug release value deviates from the mean value
of the initial dataset. For example, lower Time values (i.e., blue dots in
the Time row, Fig. 4b) resulted in a strong negative contribution to
fractional drug release, while higher Time values (i.e., pink dots in the
Time row, Fig. 4b) resulted in a strong positive contribution. After
Time, the next most influential features were T = 1.0, Drug_Mw, and
Polymer_MW. T = 1.0 was observed to have a similar relative contribu-
tion to fractional drug release as Time. Specifically, lower values of
T = 1.0 resulted in a strong negative contribution to fractional drug
release, while higher values resulted in a strong positive contribution.
Interestingly, twoof themost important features are descriptors of the
physicochemical properties of the drug and polymer (i.e., Drug_Mw,
and Polymer_MW). This indicates that, of the components of the LAI
system, the LGBMmodel has recognized that the molecular weight of
the drug and the molecular weight of the polymer has the most sig-
nificant influence on fractional drug release. The remaining molecular
and physicochemical descriptors appear to haveminimal contribution
to fractional drug release prediction for thismodel. However, it should
be noted that Fig. 4b only shows the effect of each individual feature
and does not account for potential synergy between input features.
Moreover, we know from the agglomerative hierarchical clustering
analysis (Fig. 3) that a reduction in any of the remaining features has a
negative impact on the performance of the model.

Fig. 3 | Heatmap of the absolute Spearman’s Rank correlation between the
initial 17 input features. Dark blue signifies an absolute Spearman’s Rank corre-
lation = 1, and pink represents an absolute Spearman’s Rank correlation of 0.
Attached to the heatmap is a dendrogram that displays the hierarchies of feature
clusters that were determined via agglomerative hierarchical clustering analysis.
Source data are provided as a Source Data file.

Table 2 | Table summarizes the impact of feature cluster
removal (i.e., based on their respective linkage distances) on
the predictive performance of the LGBM model

No. of
features

Mean absolute
error (n = 10)

Standard devia-
tion (n = 10)

Wards linkage
distance

17 0.116 0.018 0.00

15 0.116 0.017 0.06

13 0.142 0.017 0.12

12 0.143 0.017 0.24

11 0.143 0.018 0.29

10 0.143 0.019 0.35

9 0.139 0.022 0.53

8 0.150 0.021 0.76

5 0.296 0.023 0.82

4 0.296 0.024 0.88

The performance of the LGBM model with various numbers of input features was assessed by
comparing the average and standard deviation of the AE values obtained from a series of trials
(n = 10 trials) that randomly grouped 20%of the drug–polymer combinations as a holdout test set.
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The decision path function from the SHAP library was utilized to
better visualize the collective effect of the 15 input features onmodel
outputs. This type of analysis highlights the combined effect of the
input features and allows for individual data instances to be followed
and interpreted. Figure 5 illustrates how the LGBMmodel determines
fractional drug release predictions, using a single LAI formulation
from the dataset. 5-FU-PLGA (index 84 in the attached dataset) is a
spherical MP (~30 µm) formulation of fluorouracil (L/G = 50:50,
Mw= 104 kDa) with a DLC of 18% (wt%). Figure 5a shows a visual
comparison of the experimental and predicted fractional drug
release values for 5-FU-PLGA (index 84 in the attached dataset) and
highlights three arbitrary prediction instances (i) Time = 0 days,
predicted fractional drug release (i.e., f(x)) = 0.01; (ii) Time ’7 days,
f(x) = 0.61; and (iii) Time ≃ 20 days, f(x) = 0.82. Figure 5b shows the
decision path for each of the predicted fractional drug release values.
Each prediction begins at the base value for the model and migrates
through the LGBM model based on the contributions of each input
feature. Figure 5c shows a breakdown of the exact contribution of
each input feature on the prediction of fractional drug release for the
three highlighted data instances, as SHAP force plots. In Fig. 5c, the
relative values of each input feature are shown by a pink (positive) or
blue (negative) band on the force plot, with the width of this band
representing the numerical contribution to the final model output.
The contributions of each input feature are summed with the base
value of the model to derive the model output.

Prospective study
Utilizing SHAP analysis allowed us to establish the importance
ranking of the 15-feature LGBM model (Fig. 4) and to better under-
stand their combined contributions in generating fractional drug
release predictions (Fig. 5). This analysis also revealed that the input
features which had the greatest influence on the fractional drug
release predictions were Time and T = 1.0. While these are certainly
features that reflect the performanceof an LAI, they are not knownby
formulation scientists a priori. This information only becomes
available once the LAIs have been prepared and characterized.
However, the importance of Time and T = 1.0 to themodel is intuitive,
given that Time is the only feature of themodel that varies for a given
LAI system. T = 1.0 provides the model with fractional drug release
values after one day and could be considered a proxy for the initial
drug release rate. For instance, low values of T = 1.0 are likely to be
indicative of sustained release profiles compared to LAIs with high
fractional drug release at T = 1.0. Thus, using T = 1.0 as a proxy for
initial drug release rates might inform the design attributes of new
LAIs. We were interested in determining the impact of input features
that are more easily manipulatable by formulation scientists (e.g.,
drug properties, polymer types, LAI morphology, etc.). To investi-
gate this, we used a simple unsupervised clustering approach (i.e.,
T-distributed stochastic neighbor embedding; t-SNE) to group the
input features of the LGBM model by their respective SHAP values,
Supplementary Fig. 6.

Fig. 4 | Deployment of the trained 15-feature lightGBM (LGBM)model. a Select
examples of experimental fractional drug release profiles (orange circles) in com-
parison to predicted fractional drug release profiles (blue circles) generated by the
LGBMmodel. These include dexamethasone-loaded PLGA MPs (DEX-PLGA);
temozolomide-loaded PLGA MPs (TMZ-PLGA); fluorouracil-loaded PLGA MPs (5-
FU-PLGA); and paclitaxel-loaded PVL-co-PAVL cross-linked cylinders. b Shapley
additive explanations (SHAP) analysis for the 15-featureLGBMmodel. The impact of

each feature on fractional drug release is illustrated through a swarm plot of their
correspondingSHAPvalues. The color of thedot represents the relative valueof the
feature in the dataset (high-to-low depicted as pink-to-blue). The horizontal loca-
tion of the dots shows whether the effect of that feature value contributed posi-
tively or negatively in that prediction instance (x-axis). Source data are provided as
a Source Data file.

Article https://doi.org/10.1038/s41467-022-35343-w

Nature Communications |           (2023) 14:35 6



With the assumption that lower drug release values at T = 1.0 are
indicative of an LAI that provides sustained drug release (and vice
versa), it is possible to identify other features of the LAI systems that are
correlated with low values of T = 1.0. This was done by highlighting
relative feature values in the low-dimensional clustermapof the dataset
and comparing across features. Select examples of T = 1.0, CL_Ratio,
Polymer_MW, andDrug_Mw are shown in Fig. 6. This information can be
used to guide the design of new LAI systems. As a starting point, we
focused on the design of PLGA-based MPs. PLGA was selected for the
preparation of the formulations due to its commercial availability
(including a wide range of molecular weights), relatively straightfor-
ward methodology for MP production (compared to cross-linked sys-
tems), and widespread use in commercially available LAI products8.
Thus, our design criteria were immediately limited to systems with
CL_ratio values equal to zero to exclude any of the cross-linked particles
or cylinders in the collected dataset. This subset of the dataset can be
seen by the pink circles (i.e., low values) in the CL Ratio subplot of
Fig. 6). Following this subset of the data to the other subplots, it was
noted that certain feature values were loosely associated with drug
release at T = 1.0, and therefore indicative of whether an LAI would
release drug faster or slower. For instance, medium-high values for
Polymer_MW, medium-high values for Drug_Mw, and low-to-medium
values of DLC were generally associated with low values for T = 1.0 for
the PLGA LAIs. While lower values for Polymer_MW, low values for
Drug_Mw, and low values for DLC were generally associated with high

values for T = 1.0, for the PLGA LAIs. These trends are further high-
lighted in Supplementary Fig. 7,with the inclusionof anexpanded series
of input features. Thus, based on this analysis, we devised a table of key
design criteria for PLGA MPs (Table 3). It should be noted that the
relative values for these features are constrained to the valuesdescribed
in the initial dataset that was used to train and evaluate the model.

Based on the results of the SHAP analysis, we proceeded to pre-
pare and characterize two separate LAIs which fulfilled the design cri-
teria identified for fast-release and slow-release PLGA formulations
(Table 3). Specifically, for the “fast” release LAI, which required a
relatively low Polymer_MW, a 10 kDa PLGA was selected. While for the
“slow” release LAI, which required a medium-to-high Polymer_MW, a
50 kDa PLGA was selected. The drugs to be encapsulated in the
respective polymers were selected based on two criteria (i) physico-
chemical properties in the range determined by SHAP analysis and (ii)
exclusion from the dataset used to train the model. Specifically, sal-
icylic acid (SA) was selected as the drug for the “fast” release PLGA
formulation due to its relatively low values forDrug_Mw (138.12 g/mol),
Drug_TPSA (57.53 Å), Drug_pKa (1.79), Drug_logP (1.09), and Drug_Tm
(159.6 °C). Olaparib (OLA) was selected for the “slow” release PLGA-
based formulation due to its relatively high values for Drug_Mw
(434.47 g/mol),Drug_TPSA (86.37 Å),Drug_pKa (9.96),Drug_logP (2.35),
and Drug_Tm (208.5 °C).

The LAIs were then prepared using a well-established emulsion-
based method at drug-to-material ratios such that the values for DLC

Fig. 5 | A visual representation of how the 15-feature LGBM model generates
fractional drug release predictions using the example of 5-FU-PLGA (index 84
in the attached dataset). a Experimental fractional drug release profile (orange
circles) for 5-FU-PLGA plotted against the predicted fractional drug release profile
(blue circles) generated by the LGBM model. b Decision path taken for each frac-
tional drug release prediction for the 5-FU-PLGA system. This plot illustrates how
the LGBMmodel combines the relative contribution of each input feature to return
the predicted fractional drug release value. c Shapley additive explanations (SHAP)

force plots for the three selected data instances (i.e., fractional drug release pre-
diction 0.01, 0.61, and 0.82) showing a decomposition of predicted fractional drug
release values into the relative SHAPcontribution values for each input feature. The
relative SHAP values for each input feature are shown by pink (positive) or blue
(negative) bands on the force plot, with the width of the band representing the
numerical contribution to the final model output. Source data are provided as a
Source Data file.
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(and Initial D/Mratio) werewithin the LGBMmodel’s design criteria for
the “fast” and “slow” release formulations. Specifically, the DLC was
<0.1 for the “fast” release formulation and >0.2 for the “slow” release
formulation. For both the “fast” and “slow” systems, the values
obtained for SA-V are indicative of spherical particle morphologies.
However, the “slow” release LAIs had some medium dataset values,
thus, the OLA-PLGA system was prepared with a larger particle size
than the SA-PLGA. The physicochemical properties of the OLA-PLGA
and SA-PLGA LAIs are summarized in Supplementary Table 15. The
average particle size of theMPs was determined using laser diffraction

particle size analysis, and the morphology was evaluated using scan-
ning electron microscopy (Supplementary Fig. 8). Once prepared and
characterized, the in vitro release profiles of drugs from the LAIs were
evaluated in 0.5wt% SDS and the resulting experimental release pro-
files were compared with the LGBM model predictions. The results of
this prospective study are shown in Fig. 7 (Supplementary Fig. 9).
Overall, there was good agreement between the predicted and
experimental release profiles for both the “fast” and “slow” release
PLGA systems. However, it was noted that the experimental release of
OLA-PLGA increased significantly after day 15 compared to the pre-
dicted release profile. This increase in experimental release rate is
most likely the result of PLGA hydrolysis in the releasemedia, which is
known to result in a change in release rate46. This highlights the need
for more data on slow-release PLGA-based formulations and/or inte-
gration of information related to the time-dependent hydrolysis of
PLGA into the model.

Despite this potential limitation of the currentmodel, the results
for the OLA-PLGA system are promising. OLA is a poly ADP ribose
polymerase (PARP) inhibitor that is commercially approved (Lyn-
parza®) for the treatment of advanced ovarian cancer, metastatic
prostate cancer, metastatic pancreatic cancer, and early (or meta-
static) breast cancer47. The recommended dose of Lynparza is
300mg (two 150mg tablets) taken orally twice a day, and treatment
continues until disease progression or unacceptable toxicity is
observed48. Thus, OLA is an example of a therapeutic agent that could
potentially benefit from the formulation as an LAI.While it remains to
be seen if additional optimization is required to arrive at a version of
OLA-PLGA that is efficacious in vivo, the deployment of the LGBM

Fig. 6 | Dimensionality reductioncombinedwithShapley additive explanations
(SHAP) analysis. Two-dimensional visualization of the SHAP values calculated for
the input features of the LGBM model. The SHAP values for the 15 input features
were condensed into two principal components using principal component ana-
lysis (PCA) and then grouped together using a simple unsupervised clustering
algorithm (T-distributed Stochastic Neighbor Embedding). This low-dimensional/
clustered plot was then utilized to visualize and compare the location of data
instances corresponding to different input features, including T = 1.0; CL_Ratio;
Polymer_MW; and Drug_Mw. In each case, the attached colorbar depicts the relative
value of that feature in the dataset ranked from high (blue) to low (pink). Source
data are provided as a Source Data file.

Table 3 | Table highlighting key design criteria for “fast” and
“slow” release PLGA MPs based on SHAP analysis of the 15-
feature LGBMmodel and theobserved trends in thePCAplots

Feature/property Value for “fast” release Value for “slow” release

Drug MW Low Medium/high

Polymer MW Low Medium/high

Drug TPSA Low Low/medium

SA-V Low Low/medium

Initial D/M ratio Low Low

DLC Low Low/medium

Fig. 7 | Comparison of the experimental and predicted fractional drug release
profiles for the salicylic acid-PLGAMP (SA-PLGA) and olaparib-PLGAMP (OLA-
PLGA) formulations.The design of both the SA-PLGA andOLA-PLGAwas basedon
SHAP analysis of the trained LGBM model. Three independent batches of both
formulationswereprepared, and their experimental drug releasewas characterized
in 0.5wt% sodium dodecyl sulfate (SDS) to ensure sink conditions throughout the
experiments. The fractional experimental drug release profiles for SA-PLGA and
OLA-PLGA are plotted together as pink circles with a solid line (SA-PLGA) and blue
hexagons with a solid line (OLA-PLGA), respectively. In both cases, the standard
deviation (STD) observed for these experimental drug release measurements is
displayed as a colored halo (n = 3). The fractional drug release profiles predicted by
the LGBMmodel are also shown as pale pink circles with a broken line (SA-PLGA)
and pale blue hexagons with a broken line (OLA-PLGA), respectively. Source data
are provided as a Source Data file.
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model here has directed the design of an LAI (OLA-PLGA) with sig-
nificant potential.

In summary, cutting-edge ML technologies are now freely avail-
able to pharmaceutical andmaterials scientists. The results obtained in
this study demonstrate the potential for ML to expedite the develop-
ment of innovative drug-delivery technologies. Among the strengths
of modernML techniques are their ability to provide insights into how
models reach their predictions. Herein we demonstrate that ML
models can not only be used to predict in vitro drug release from LAIs
with a high degree of accuracy but also that interpretation of such
models canbeused to guide thedesignofnew formulation candidates.
In the current study, we found that for this dataset, the tree-based
LGBMmodel provided themost accurate prediction of fractional drug
release. Given the small size of the dataset (<4000 observations) and
thatmost of the data points contain variables that are properties of the
drug or polymer, it is perhaps not surprising that the neural network
models investigated did not perform well. As the use of ML in drug
formulation development increases, we anticipate that larger datasets
will become available, leading to an increase in the utility of neural
networks. In the meantime, the implementation of tree-based models
such as LGBMhas the potential to reduce the time and cost associated
with the development of LAI formulations. For instance, the data-
driven approachusedhere directs thedesignof a promising LAI for the
drug olaparib (OLA-PLGA). However, it remains to be seen if additional
optimization is required to arrive at a version of OLA-PLGA that is
efficacious in vivo. Overall, these results demonstrate a promising
application ofML in drug formulation development. It is our hope that
this proof-of-concept study, and its associated dataset, will aid in fos-
tering the development of more advanced, tailored, and accurate ML
approaches for the design of new drug formulations.

Methods
Machine learning
Data collection. The dataset was constructed from previously pub-
lished studies by our group and other research groups10,17–44. The stu-
dies performed by our group include spherical and cylinder-shaped
polymeric LAIs10,18,38. Data from external sources were identified using
the Web of Science search engine and the keyword combination
“polymeric microparticle” and “drug delivery”17,19–37,39–44. Information
related to the preparation, final composition, and release kinetics of
drugs from LAIs was collected. The latter was primarily extracted from
figures of in vitro drug release profiles using the “GetData Graph
Digitizer” application. The final dataset contained 181 drug release
profiles for 43 unique drug-polymer combinations. In total, this com-
prised 3783 individual fractional release measurements. The initially
collecteddatasetwas composedof a tableof drug andpolymer names,
as well as physicochemical properties of the formulation, and frac-
tional drug release values at various timepoints. In order to use this
data to construct and train ML models, it is necessary to describe
various elements using machine-readable descriptors which were
generated using RDkit. The polymers and LAI formulations were
described exclusively using information reported in the relevant
published articles; these included; polymer_MW, LA/GA (for non-PLGA
systems, this was set as zero),molecular CL_Ratio (for non-cross-linked
systems, this was set as zero), initial D/M ratio, DLC, SA-V ratio for the
LAI system, fractional drug release at 6 h (T =0.25), fractional drug
release at 12 h (T =0.5), fractional drug release at 24 h (T = 1.0), and the
percent of surfactant present in the release media (SE; where no sur-
factant was present in the releasemedia, this was set as zero). With the
exception of SA-V, T =0.25, T = 0.5, and T = 1.0, the 17 input features
were either extracted from original publications or calculated using
the RDkit package. SA-V was constructed and implemented for this
study as it confers information that is related to the size and shape of
the LAI system. This enables the inclusion of both spherical and
cylindrical-shaped LAIs in one model. For studies wherein values

for fractional drug release were not available at early timepoints (i.e.,
T = 0.25, T = 0.5, and T = 1.0) they were imputed using best-fit poly-
nomial curves that range from T =0 to T = 2 days.

Data splitting strategy for ML model training. ML models were
trained and evaluated using a nested cross-validation approach. The
nested cross-validation approach consisted of an inner (training and
validation) and outer (test) loop. To implement the nested cross-
validation approach, the collected dataset was grouped by drug-
polymer combinations (43 unique drug–polymer combinations in
total), to allow cross-validation against drug–polymer based splits.
For each ML model, ten trials of the nested cross-validation method
were conducted to assess the general performance of each algo-
rithm. For each implementation of the nested cross-validation
method, 20% of the drug-polymer groups in the dataset were ran-
domly held back for evaluation using the group-shuffle-split method
from the Scikit-learn library in Python49. The remaining 80% of the
drug-polymer groups were then used for hyperparameter selection
of models in the inner loop. This was done using the random grid
search method from the Scikit-learn library in Python49, with 100
random hyperparameter configurations being assessed in each case.
Within the inner loop, data were again grouped and split by
drug–polymer combination using the Group k-fold cross-validation
strategy from the Scikit-learn library in Python49 (where k = 10). Thus,
10% of the drug-polymer groups within the inner loop were used for
hyperparameter evaluation, while the other 90% were employed to
train the various model architectures selected using the random grid
search method. The outer loop was used to test the performance of
the model structure (i.e., fixed hyperparameters) selected by the
inner loop using a holdout dataset (i.e., 20% of the drug-polymer
combinations in the initial dataset).

ML model development. In total eleven ML algorithms were trained
and investigated for this task. These included MLR, lasso, PLS, DT, RF,
LGBM, XGB, NGB, SVR, k-NN, and NNmodels. All of thesemodels were
built and evaluated in Python. NN models were built using the Keras
package with the backend of TensorFlow50, LGBM models were built
using the lightGBM package51, XGB models were built using the
XGBoost package52, NGB models were implemented using the
NGBoost package53, and all other models were built using the Scikit
learn library49. In all cases, prior to training any of the ML models, a
data preprocessing step was conducted to standardize the data prior
to input into the ML models. This was done using the standard scalar
package available in the Scikit learn library49. ML model hyperpara-
meters were tuned using the randomized grid search package in Scikit
learn49, and the negative mean absolute error metric was employed.

ML model evaluation. To assess the predictive performance of all
trained ML models, the predictions for each outer loop (n = 10) split
from the nested cross-validation were compiled into a data frame for
analysis. This amounted to ~8000 data samples and enabled a more
quantitative evaluation of general prediction accuracy for eachmodel.
This was done by determining the absolute error (AE) for each pre-
diction made for each sample in each of the ten outer loops. The AE
and MAE were determined using the equations shown below

Absolute error ðAEÞ= ∣ŷi � yi∣ ð1Þ

Mean absolute error ðMAEÞ=

Pn

i = 1
∣ŷi � yi∣

n

ð2Þ

Where ŷi is the predicted fraction drug release value; yi is the experi-
mental fractional drug release value obtained from either the training
or external validation datasets; n is the total number of data points.
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Feature engineering. Agglomerative hierarchical clustering analysis
was performed using the hierarchical clustering package from SciPy in
Python54 to arrange the initial input features into a hierarchy of clusters
using the farthest neighbor clustering algorithm. The performance of
the optimal ML algorithm (LGBM) was then assessed following the
removal of select clusters based on their linkage distance. Here, the
hyperparameter structure for the LGBM model identified during pre-
liminary screening (i.e., nested cross-validation) was utilized, and only
the number of input features was varied.

Model interpretation. SHAP analysis was conducted on the trained 15-
feature LGBM model. The effect of the various input features on the
fractional drug release prediction for the initial dataset was assessed
using the TreeSHAP package and the force plot visualizations from the
SHAP library in Python55,56.

Principal component analysis. Dimensionality reduction was neces-
sary to better visualize the impact of themodel input features on initial
drug release values. We used t-SNE to cluster the input features of the
LGBM model by their respective SHAP values. To employ the t-SNE
algorithm, we first utilized PCA to reduce the dimensionality of the 15-
feature LGBM dataset into two principal components.

Prospective study
Materials. Resomer® RG 504 H (PLGA, LA:GA = 50:50, Mw= 38–54 k),
Resomer® RG 502 H (PLGA, LA:GA = 50:50, Mw= 7–17 k,), salicylic acid
(SA, ≥99.0%), poly(vinyl alcohol) (PVA, Mw= 13–23 k, 87–89% hydro-
lyzed), sodium dodecyl sulfate (SDS, ≥98.5%), and dimethyl sulfoxide
(DMSO, ≥99.9%) were purchased from Sigma Aldrich (ON, CA). Acet-
onitrile (ACN, HPLC grade) and formic acid (FA, LC/MS grade) were
purchased from Fisher Chemical (ON, CA). Dichloromethane (DCM,
HPLC grade) and methanol (HPLC grade) were purchased from Cale-
don Laboratories Ltd. (ON, CA). Olaparib (OLA, ≥99%) was purchased
from MedKoo Bioscience (NC, US). Phosphate buffered saline (PBS,
Gibco, pH = 7.4) was purchased from Thermofisher (Massachusetts,
USA). Tween 80 (reagent grade) was purchased from Bio-
Shop (ON, CA).

Formulation preparation. PLGA MPs were prepared based on a
modified version of a previously reported oil-in-water (o/w) emulsion
method25. For OLAMPs, 300mg of RG 504 H and 200mg of OLA were
dissolved in 6mL of a solvent mixture (DCM:DMSO = 50:50, v/v) in a
20mL scintillation vial to produce the organic phase. The organic
phase was then emulsified in 200mL of MilliQ water (0.01 wt% PVA,
previously cooled to 4 °C) using a homogenizer (L5M-A Lab Mixer,
Silverson, MA, US) at 1500 rpm for 30min. After homogenization, the
emulsion was added to 500mL of MilliQ water (without PVA, pre-
viously cooled to 4 °C) and stirred at 500 rpm for 60min. The MPs
were then filtered using a 100 µm cell strainer (Fisherbrand Sterile Cell
Strainers, ON, CA), followed by a 70 µm cell strainer (Fisherbrand
Sterile Cell Strainers, ON, CA) to retain the MPs within the size cut-off
(i.e., 70–100 µm). MPs were then collected and frozen at −80 °C for
30min prior to lyophilization overnight. For SA MPs, 300mg of RG
502 H and 150mg of SA were dissolved in 4mL of a solvent mixture
(DCM:DMSO = 75:25, v/v) in a 20mL scintillation vial to produce the
organic phase. SA MPs were then formulated as described for the OLA
MP formulation, except for the filtration step, where 70 µm and 40 µm
cell strainers (Fisherbrand Sterile Cell Strainers, ON, CA) were utilized
to retain the MPs with diameters ranging from 40 to 70 µm.

Sizemeasurement. Measurements of particle size were conducted via
laser diffraction, using a Mastersizer 300 (Malvern, ON, CA) equipped
with a Hydro SV accessory. For both OLA and SAMPs, around 5–10mg
of lyophilized MPs were suspended in 100 µL of MilliQ water (with

0.2wt%Tween80). The 100 µLMP suspensionswere then added to the
system for evaluation.

Morphology. The morphologies of lyophilized OLA and SA MPs were
evaluated using scanning electron microscopy (SEM, Quanta FEG 250
ESEM) at the Centre for Nanostructure Imaging at the University of
Toronto.

Drug loadinganalysis. To evaluate drug loading, ~10mgof lyophilized
MPs were weighed, and the drug was extracted using 4mL of a
DCM:DMSO solvent mixture (50:50 for OLA and 75:25 for SA, v/v) in a
20mL scintillation vial. This solution was then vortexed until the MPs
were fully dissolved in the solvent. Following this, the resulting solu-
tion was filtered (0.45 µm, Millex-HV PVDF Syringe Filters, Sigma
Aldrich, CA) and appropriately diluted in methanol prior to drug
quantification via high-performance liquid chromatography (HPLC).
HPLC analysis of OLA and SA was performed using an Agilent Tech-
nologies 1260 Infinity II (Agilent Technologies, Santa Clara, CA, USA)
with a photodiode array (PDA) detector and an XDB-C18 column
(4.6 × 150mm, ZORBAX Eclipse, Agilent). The mobile phase was com-
posed of MilliQ water:ACN (70:30wt%, with 0.1 wt% FA), and the flow
rate was 1.2mL/min. OLA and SA were analyzed at wavelengths of
254nm and 303 nm, respectively. The experimental drug loading
capacity (i.e., DLC) was calculated as follows:

Drug loading capacity %ð Þ= Mass of drug extracted
Mass of drug loaded MPs

× 100% ð3Þ

Drug solubility in the release media. To ensure the in vitro drug
release studies were conducted under sink conditions, the solubility of
the drug in the release media (PBS with 0.5wt% SDS) was measured.
Specifically, an excess amount of drug (~10mg of OLA and ~30mg of
SA) was added to 5mL of release media (i.e., PBS with 0.5% Tween) in
scintillation vials. The scintillation vials were incubated at 37 °C with
gentle stirring (50–100 rpm) overnight, followed by filtration using a
filter membrane (0.45 µm, Millex-HV PVDF Syringe Filters, Sigma
Aldrich, CA). The drug concentrations were then quantified using
HPLC as described in the previous section.

Drug release assay. To characterize the in vitro drug release pro-
files, 8–10mg of OLA MPs (corresponding to ~2.5mg of drug) and
20–40mg of SA MPs (corresponding to ~0.5mg of drug) were
weighed for each release assay. The MPs were then suspended in
centrifuge tubes (15 mL, Corning, Sigma Aldrich, CA) containing
15 mL of release media. The tubes were incubated at 37 °C with
gentle mixing using a tube shaker (Labquake, Fisher Scientific). At
predetermined timepoints, the release samples were centrifuged at
45 × g for 3min to pellet MPs at the bottom of the tube. Aliquots
(1 mL) of the supernatant were analyzed, the remaining media was
discarded, and fresh release media (15mL) was added to each tube
to ensure sink conditions. Drug release was quantified using HPLC
as previously described. Fractional drug release was calculated as
follows:

Fractional drug release =
Mass of drug released
Mass of drug loaded

ð4Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset and results that support the findings of this study are
available on Zenodo and ChemRxiv. Source data are provided in
this paper.
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Code availability
The code that supports the findings of this study is available at the
Aspuru-Guzik Group’s GitHub page and on Zenodo57.
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