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ABSTRACT: In the last five years, there has been tremendous growth in
machine learning and artificial intelligence as applied to polymer science.
Here, we highlight the unique challenges presented by polymers and how
the field is addressing them. We focus on emerging trends with an
emphasis on topics that have received less attention in the review
literature. Finally, we provide an outlook for the field, outline important
growth areas in machine learning and artificial intelligence for polymer
science and discuss important advances from the greater material science
community.
KEYWORDS: Polymers, Machine Learning, Artificial Intelligence, Autonomous Experimentation, Transfer Learning, Explainability,
Optimization, Inverse Design, Deep Learning, Open Science

■ INTRODUCTION
Artificial intelligence (AI) has already revolutionized our daily
lives from self-driving cars to semantic language translation to
tailored content feeds and beyond. The latest AI image
generation models can transform text strings into images that
can be nearly indistinguishable from high-quality human
generated art and photography.1 In medicine, machine learning
(ML) models are being used to identify carcinogens and
diagnose diseases such as Parkinson’s that, previously, could not
be identified from biomarkers.2,3 Decades long scientific
problems, such as the classic “protein folding” problem, are
being tackled by AI that produce results which approach the
resolution of our best measurements.4 With eachmajor advance,
it is clear that we have yet to realize the full impact of AI andML.
Even within the materials science community, the application

of ML and AI techniques is becoming routine.5−8 For the
purposes of this article, ML is the use of mathematical models to
perform well-defined data tasks such as clustering, classification,
or regression. AI is a more difficult term to define, but generally
refers to the emergent “behaviors” that arise from complex stacks
of ML and data models. Given that these terms are often used
interchangeably, for simplicity we will refer toML rather than AI
and ML in this article. Over the past five years or so, there has
been tremendous progress in the application of thesemethods to
polymer problems as detailed in numerous perspectives and
reviews.9−20 Polymers focused researchers are using ML to
accelerate the discovery of new materials and new knowledge, as
well as working to overcome barriers such as data scarcity. For
example, ML has enabled the generation of potential new
polymer chemistries,21 new materials for gas separation
membranes,22 prediction of properties for sequence defined
polymers,23 bioplastic design,24 guidance for improving 3D
printing,25 improved contrast agents for magnetic resonance

imaging (MRI) measurements,26 and methods for improved
predictions of very small data sets.27

Despite this progress, the field is still plagued by a variety of
challenges that arise from both the unique and nonunique
problems associated with polymer science. Unlike many kinds of
materials, the structure of polymers is inherently stochastic
rather than a single structure. This makes the representation of
polymers inMLmodels a challenge. Furthermore, “big data”ML
(i.e., data set sizes close to a billion) is currently out of reach for
the polymer community as there are no publicly available
databases that provide enough well-tagged polymer data to
support such an endeavor. Many of the key measurements
leveraged in the polymer community rely on instruments made
by manufacturers that do not provide open interfaces and data
models for their devices, impeding the creation of databases and
making the integration of these devices into high-throughput
and automation platforms nearly impossible. Table 1 expands
upon the current list of challenges facing the polymers
community and categorizes them into broad areas.
In this paper, we first give an overview in Creating an ML

Pipeline and then provide Updates on two of the largest
challenges that continue to plague the polymers community:
Data and Polymer Representations. Next, we highlight growth
areas, many of which have received less focus in recent polymer
reviews, in New Progress. Since polymerML is a rapidly growing
field, especially since 2017, we focus on recent studies and limit
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discussion on topics that are well-covered in recent reviews, such
as the application of ML to simulations (see refs 11 and 28) and
inverse design (see ref 15). Finally, we conclude with anOutlook
section that provides an editorial assessment on several of the

areas of new progress and discusses important, but less discussed
topics including the role of Open Science and Best Practices and
Challenge Problems within the ML space. To further guide the
reader, we have provided key connections between the

Table 1. Challenges Facing the Polymer Machine Learning Community

category challenge paper section

polymer nature polymer structure is stochastic and hierarchical Data, Polymer Representations, Deep Learning
polymer nature morphology is process history dependent Data, Domain Knowledge, Optimization and Inverse Design
polymer nature,
community

data is not produced in standardized formats Data, Polymer Representations, Unsupervised Analysis

community (meta)data is not complete, accessible, or shared Data, Unsupervised Analysis, Open Science
community code is not accessible or open Open Science
community available data is small and disperse Data, Data Fusion and Transfer Learning, Domain Knowledge, Open Science, Beyond

Polymer Autonomous
community analyses are not reproducible Open ScienceBest Practices and Challenge Problems
community models do not provide uncertainty quantification Data, Autonomous Experimentation, Data Fusion and Transfer Learning, Best Practices

and Challenge Problems
community models are not explainable Interpretability and Explainability, Domain Knowledge, Unsupervised Analysis
community models do not extrapolate Domain Knowledge
hardware custom hardware is hard to use and adapt outside of

initial study
Autonomous Experimentation

hardware commercial hardware has poorly documented or
closed interfaces

Beyond Polymer Autonomous

all large combination of skills needed to carry out
studies

Data, Autonomous Experimentation, Beyond Polymer Autonomous

Figure 1. Typical pipeline for polymer ML. We emphasize that due to the rapidly growing field of ML, this pipeline does not cover all potential use
cases. Acronyms include Gaussian process regression (GPR), neural network (NN), mean squared error (MSE).
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outstanding challenges and how the polymer community is
addressing these challenges as categorized by paper subsections
in Table 1.

■ CREATING AN ML PIPELINE
Here, we provide a brief overview of the steps from
conceptualization to a production ML model as shown in
Figure 1. We emphasize that these steps are often a
simplification of the complicated pipelines that are currently
being constructed and used in production environments and
that we only seek to provide a broad overview for the uninitiated
reader. We direct the reader to other resources for more
complete treatments of ML and model building.29−32

The first and most important step in developing a production
ML model is problem identification. In polymer science, the
there are typically two ultimate goals for ML: materials/process
design and knowledge discovery. For materials/process design,
example goals could be a new polymer chemistry, a new
processing protocol or a new formulation. These challenges
often fall under the umbrella of inverse design and normally
involve property optimization. For example, selecting the
polymer with the highest thermal conductivity33 or balancing
multiple objectives.34 For the goal of knowledge discovery, an
example could be what processing parameters are essential for a
given application. However, a specific ML pipeline might have
an intermediate goal such as polymer characterization
(including property prediction), generating a fast surrogate
model (such as replacing time-consuming experiments or
simulations) or generating a database (such as a list of possible
polymers or extraction of data from the literature).
The second step is data collection, generation, and selection.

This could involve running new experiments or simulations,
taking data from handbooks (online or otherwise), using other
historical data or a combination thereof. Since ML is a data-
driven technique, data selection and data quality are particularly
important. Missing metadata or improperly collected data can
influence models in ways that are difficult to identify and
diagnose. For many polymer applications, processing history
plays an essential role and this information must be captured in
the metadata for ML models to be effective. At this step, if
applicable, it is recommended to consider the uncertainty and
determine the intrinsic error in the data set as an ML model
cannot make predictions at a higher accuracy then the original
data set unless additional knowledge is encoded in the model.
Next, the data may need to be cleaned. This involves everything
from identifying biases in the data set (such as certain values
being more likely than others) to finding outliers (which could
be either erroneous or interesting data) to normalizing the data.
The fourth step is featurization. This includes converting

chemistry into machine readable quantities (i.e., features), a
process known as fingerprinting. This can be done with hand-
crafted features or using ML techniques to automatically
perform the featurization. Examples of featurization include
images being fed into convolutional neural networks (where the
convolutional layers automatically featurize the data) or
encoding the chemistry and bond connectivity of molecules in
graph neural networks. At this stage, it is also advisable to
identify correlations between features and determine if fewer
features can be used especially if there is data scarcity.
Next is model selection. There are a variety of ML models

crafted for different tasks. For example, in regression, which can
be used for property prediction, a continuous output, such as
density, is predicted as a function of an input, such as chemistry.

Classification is similar, but the output is a discrete class such as
phase separated versus homogeneous. Both of these tasks are
considered supervised since the training data is labeled with an
output (e.g., the density value or homogeneous/separated
class). Clustering is used to group data together and can be used
to identify different phases even if the type of phase is unknown.
Dimensionality reduction can be used to generate knowledge by
projecting complicated, high dimensional data onto a lower
dimensional space that may be easier to interpret. Clustering and
dimensionality reduction are considered unsupervised when the
data is unlabeled (e.g., the categories in clustering are not known
a priori). Generative models are designed to generate new data
from existing data, such as new polymer structures from a list of
previously synthesized polymers. As is becoming increasingly
common, hybridmodels are used wheremultipleMLmodels are
combined. This can be relatively straightforward, such as
performing dimensionality reduction on the features prior to
another task in order to improve performance. Alternatively, it
can be more complicated and integrated with other tasks such as
optimization. Independent of the chosen task, key aspects in
model choice are simplicity, uncertainty quantification, and
performance.
After model selection is model training. This includes

separating the training data into batches for separate training,
testing, and cross-validation. In also includes optimizing the
hyperparameters of the model. This step is particularly
important because bad choices of hyperparameters can lead to
models with suboptimal predictions and additionally lead to
difficulty in the benchmarking step. Success in optimization may
depend on the algorithm for optimization, the optimizer
parameters and the quantity being optimized (e.g., minimizing
mean squared error).
Benchmarking is particularly important as many aspects of

ML (similar to numerics) are still an art form rather than a
science. Since model training can be time-consuming,
prototyping is highly recommended. It is usually useful to
compare more complicated models with simpler models to
determine if the additional complexity is helpful or not.
Benchmarking could include comparing different model types,
different hyperparameters, different data sets, different featuriza-
tion schemes, etc. Often it is done by comparing error metrics
such as mean squared error, R2, or, in the case of classification, F1
score. At this stage, visualization of the results is also
recommended since few error metrics capture a full picture of
the performance. Concerns might include extrapolation or if
there are classes that are more accurate than others. For
visualization, parity plots can be useful.
Finally, there is the productionmodel. At this point, themodel

can be used for its intended purpose (e.g., materials/process
design or knowledge discovery). Many model varieties are much
faster to execute than they are to train and therefore can be
applied repeatedly, or in real time after training. At this point, we
highly encourage readers to share their models, benchmarking,
generating code and data. As discussed in Open Science, this will
ultimately further the two key goals of ML for polymers:
acceleration of new materials discovery and new science.
While the above steps describe many ML models in polymer

science, ML is a growing field that can defy categorization.
Pipelines can become much more complicated by not only
combining differentMLmodels as previously discussed, but also
by combining data from different sources as discussed in Data
Fusion and Transfer Learning and by active learning, a
technique where new data is selected iteratively and the ML
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model is updated. This framework will be discussed in more
detail in Autonomous Experimentation.

■ UPDATES

Data
ML, by definition, relies on data. As shown in Table 1, ML for
polymers has many data challenges. First, there is the issue of not
having enough data. LargeMLmodels such asMegatron-Turing
Natural Language Generation,35 an advanced language model,
and AlphaFold2,4 an accurate predictor of protein structure, rely
on enormous data corpora covering billions to hundreds of
billions of words or protein sequences.36 Second, there is the
issue of not having enough quality data. For example, the glass
transition temperature is an important property where there are
several data sets, and yet even combining curated data sets can
yield large uncertainties. Jha et al. explicitly explored this by
combining three curated data sets (two handbooks and one
online resource) and found that the intrinsic uncertainty was
around 40 K,37 which is likely prohibitively large for use in
polymer design. They found that using predictions of the
median yielded uncertainties roughly similar to the intrinsic or
irreducible uncertainty. Thus, the only way to improve the
model further is to improve the data. This case study highlights
that the issue of data quality is a subtle one and intricately
intertwined with the issue of metadata, the contextual
information for the data. Polymers are particularly complicated
because (1) they are intrinsically stochastic in nature�
composed not of a single molecule type, but an ensemble of
different structures, (2) their properties can significantly depend
on their processing history, (3) measurements can often depend
on instrument settings, and (4) uncertainty quantification in
both the data and metadata is often critical. Thus, it is essential
to capture and ultimately use both the data and metadata in ML
pipelines. Proprietary and nonstandardized data formats further
exacerbate these issues. A list of different methods for obtaining
data and considerations is shown in Table 2. Note that these
considerations are directly related to the aforementioned
challenges.
To tackle these data and metadata related issues, which are

ultimately issues associated with making data Findable,
Accessible, Interoperable and Reusable (FAIR),38 there are

several options. First, there are painstakingly curated handbooks
and online resources, many of which include relevant metadata.
However, the data set sizes are fixed and the sources can be
varied resulting in heterogeneous data. Refer to Table 1 of refs
12, 13, and 14 for useful lists of such resources.
Another option is high-throughput experiments.39 This idea is

not a new one as detailed in a recent comment16 and has the
benefit of incorporating the relevant metadata from the start by
ensuring that experiments are performed consistently. However,
it cannot be broadly applied as some systems and measurements
are unsuited for such experiments due to long measurement
times or difficult to automate material processing steps.
Furthermore, the development of high-throughput platforms
can be prohibitively costly in time, money, and resources.
Despite this, many researchers have pursued the development of
high-throughput techniques and one branch of this field will be
discussed in the Autonomous Experimentation section below.
There are also high-throughput simulations,40−45 which face

the same benefits and challenges as high-throughput experi-
ments with the notable differences that data and metadata from
simulations are intrinsically machine readable and that
simulations are often not quantitatively predictive of experi-
ments. Thus, for polymer design, simulations are used to identify
potential candidates41 or in the case of property predictions,
experimental and simulation data must be merged or otherwise
used.42,43

An orthogonal approach is to use ML itself to find polymer
data that is published in the literature, an approach known as
natural language processing (NLP). There has been some
promising progress in this area notably in identifying polymer
names,46 recognizing that the same polymer is referred to by
different names,47 developing pipelines for property extrac-
tion,48,49 and generating knowledge via word embeddings,
which represent words as vectors.50 However, the issue of
deciphering the polymer name and capturing all of the relevant
metadata is still not fully solved. Nonetheless, it is a promising
area. For example, Lin et al. developed PolyName2Structure,
which takes in polymer names (common, source, or structure)
and then predicts monomers, predicts reactions, and simulates
those reactions in order to yield a polymer structure.51 Progress
in the broader materials domain6 shows that NLP may be a
promising approach to not only get materials data, but also
materials knowledge. However, for the average polymer ML
developer, the skill set required to use NLP is likely prohibitive,
especially since NLP suffers from many of the same problems as
manually curated data sets from a data user perspective.
Finally, another approach is to provide a resource where

individual polymer scientists can deposit their data andmetadata
through a robust data model. This is the idea behind
MaterialsMine,52,53 which focuses on nanocomposite and
mechanical metamaterials, and the Community Resource for
Innovation in Polymer Technology (CRIPT), which considers
all varieties of polymeric materials.54 MaterialsMine currently
serves not only as a data resource, but also provides additional
features on their platform to process and visualize data. For full
details, we refer the reader to their Web site52 and article.53 For
CRIPT, a key part of this resource will be making it easier for
polymer scientists to do science through advanced search, data
visualization and private data sharing prepublication. For more
information, see their Web site.54 It builds on ideas that are
already being implemented in industry,55 and brings them to the
public domain. Furthermore, it enables polymer ML by
following FAIR data practices including the use of an API

Table 2. Methods for Obtaining Data and Corresponding
Considerations

method considerations

manual very limited data set sizes
high-throughput experiments need custom hardware

need specialized skill set
high-throughput simulations need specialized skill set
natural language processing data can be heterogeneous

need specialized skill set
metadata may not be available
uncertainty may not be available

curated databases limited data set sizes
data can be heterogeneous
metadata may not be available
uncertainty may not be available
data collection may be manual (no API)

user populated databases data can be heterogeneous
metadata may not be available
uncertainty may not be available
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(Application Programming Interface) and a web-based interface
for both data deposit and access.
Polymer Representations
For ML, chemical structures must be represented in a machine
readable format. Utilizing advances in the representation of
small molecules, there are a variety of methods that have been
developed to address this problem. As detailed in prior
reviews,14,15 common options include using group contribution
methods, converting line notations to numerical vectors called
fingerprints through open software such as RDKit,56 using a
graph based representation along with graph convolutional
neural networks to represent a 3Dmolecule in 2D, directly using
line notation in text-based ML methods, and developing
handcrafted, hierarchical fingerprints to replace or supplement
the previously described fingerprints.
Thus, far, most of these methods have focused on

homopolymers ignoring the stochastic nature of polymers. A
key advance in capturing the stochasticity of polymers is the
development of an extension of simplified molecular-input line-
entry system (SMILES) to polymers known as BigSMILES, as
shown in Figure 2.57 More recently, PolyGrammar was

developed to describe polyurethanes using a hypergraph
representation.58 However, there is not yet a method to generate
fingerprints that encode the stochasticity for all varieties of
polymers. The issue of polymer stochasticity is acute for
copolymers, polyolefins, and complicated polymer architectures.
Kuenneth et al.59 find that for random copolymers, they can
simply weight the homopolymer fingerprints by the relative
fractions of the two monomers. However, a general solution
when there are a large number of different monomers, where the
ensemble plays an important role, or the structure of the
polymer is nonlinear are not fully solved. One recent effort in
this direction using data from simulations found that sequence
defined polymers were best represented by a recurrent neural
network.60 In a notable work, Patel et al. looked at different ways
of encoding sequence and compared their results to non-
sequence-specific methods.61 They considered four different
data sets, one of which was experimental. Ultimately, they found
that the best methods depend on both the property being
predicted and the data set. Based on their results, they
recommend encoding polymer size, including chemical based
information as opposed to one hot encoding when chemistry
and extrapolation are important, and making use of the polymer
sequence if it is known. Recent work by Aldeghi and Coley
worked to address the issue of ensembles of polymers.62

Specifically, they represented polymers by graphs where atoms
were represented by nodes and bonds are represented by edges.
Bonds between different monomers were assigned different

weights based on their average probability thus allowing one to
distinguish a diblock copolymer from a random copolymer.
However, this work still needs to be extended to the case of
conditional bonding probabilities.
Perhaps, the largest learning lesson from advances in polymer

representation is that the optimal representation is highly likely
to depend on the problem at hand (e.g., chemistry, ML model,
task), as well as on the amount of data available for training.
These interactions will often be nontrivial leading back to a key
tenet of ML�that prototyping is essential. Nonetheless, basic
guidance such as including metrics that matter (e.g., molecular
mass if a property is sensitive to molecular mass) will continue to
be important.

■ NEW PROGRESS

Autonomous Experimentation

Active learning is an approach in which a ML agent, which
generally consists of one or more unsupervised and/or
supervised models, is responsible for choosing which data gets
added to its training corpus in an iterative fashion.32 This
approach is useful when the acquisition of the data is expensive,
e.g. when the materials are costly to synthesize or the
measurement is slow and tedious. A common class of active
learning is BayesianOptimization (BO) in which the property to
be optimized is cast within a Bayesian statistical framework. Of
particular importance in these methods is the acquisition
function which determines which data point or set of data will be
added to the training corpus. Common acquisition functions
include pure exploration, pure exploitation, expected improve-
ment, and Thompson sampling.32,64

Within the materials community, autonomous experimenta-
tion platforms are being developed to perform experiments with
little to no intervention from human scientists by leveraging
active learning algorithms. These automated and autonomous
experiments promise to help scientists discover materials with
optimized properties more quickly, map phase spaces more
accurately, and use less material in the pursuit of these goals.
Automated and high-throughput robotic platforms do not
require breaks and can operate with higher precision and
repeatability than their human counterparts. Furthermore,
automated systems tend to naturally integrate with databases
and materials ML platforms as the metadata for each sample is
likely already digitized as part of the preparation process. Most
importantly though, automated and autonomous experiments
free the scientist to spend less time and energy on the tedium of
running a particular experiment and more time on interpreting
the data and planning the next one.
While there have been several recent studies focusing on

developing active learning techniques for polymers using
premeasured data sets, theory or simulations,65−70 here we
focus on experimentally realized autonomous platforms. These
studies either directly or indirectly address key challenges in
applying ML to polymers as outlined in Table 1. Building
automated platforms requires a confluence of skills (from
machining to robotics to software development) that can be
difficult to find in a single researcher or polymer research group,
so these studies are often collaborative. A reality of polymer
materials is they are often used or studied in nonequilibrium or
kinetically trapped states and that their properties are processing
history dependent. Automated platforms can help mitigate or
facilitate the study of process history and nonequilibrium
phenomena through their control and repeatability. Further-

Figure 2.Depictions demonstrating how BigSMILES captures different
polymer chemistries. Reprinted from ref 57. Copyright 2019 American
Chemical Society.
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more, robotic automation often provides a more direct route to
quantifying certain parts of the uncertainty in material synthesis.
While significant work has gone into developing synthesis

platforms and methods that mostly focus on small-mole-
cule71−73 and colloidal74−77 synthesis, comparatively less focus
has been given to polymer synthesis.78 In the last several years,
several groups have taken advantage of the versatility of
reversible addition−fragmentation chain transfer (RAFT)
polymerization and constructed automated copolymer synthesis
platforms.26,79−83 These studies seek to find the polymer
sequence or reaction conditions that achieves an optimal
material property such as 19F magnetic resonance signal (MRI)
signal for contrast agents,26 retained enzyme efficiency for
protein stabilizers,79 or simply the conversion and dispersity of
the synthesis itself.80Figure 3a shows one such autonomous
synthesis platform from ref 26.
Beyond synthesis, there are recent studies that focus on

optimizing the design of polymer formulations rather than
polymer chemistry. In these works, the goal is to find the
component composition or processing conditions that opti-
mizes some material property of interest. These include
optimizing the degradation behavior of organic photovoltaic

films,84 the gelation time and bacterial activity of living silk
hydrogels,85 the melting point and electrical properties of deep
eutectic solvents,86 and the physical properties and cost of
surfactant solutions.63 The inclusion of cost as an optimization
variable is notable in that it ensures that the final results balance
performance against the bill of materials needed to make the
sample, likely making the results more useful to industrial
scientists. The idea of including secondary optimization
variables can be extended to experimental nonidealities (e.g.,
slow motor axes, hysteresis) in order to increase the efficiency of
the robotic exploration of a material property space.87Figure 3b
shows an autonomous formulation platform from ref 63.
These studies present a mix of semiautomated26,63,84 and fully

automated79,80 platforms. For semiautomated cases, the authors
chose to manually perform key processing, purification, or
measurement steps rather than attempting to automate them.
While fully automated platforms might allow for higher
throughput, the development cost, in both money and time,
can often outweigh the benefit when the scientific goals of the
study can be achieved with minimized, rather than zero user
interaction. Furthermore, active learning researchers from
outside of the polymer community point out that “human-in-

Figure 3. Schematics and pictures of two autonomous experimentation platforms. (a) Automated continuous flow reactor for optimizing copolymer
synthesis of 19F MRI agents. Reprinted from ref 26. Copyright 2021 American Chemical Society. (b) Automated mixing and characterization platform
for studying surfactant properties and phase behavior. Reprinted with permission under a Creative Commons CC-BY 4.0 License from ref 63.
Copyright 2021 CellPress.
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the-loop” agents or “human-machine teaming” can produce
better results by taking advantage of the strengths of both
humans and machines.69,88,89

These above studies present significant variation in the kind of
MLmodels employed in their autonomous agents. For several of
the studies,79,80 BO approaches were used with Gaussian
Process (GP) models as surrogate optimization functions.
Langner et al. chose to use Bayesian neural networks in order to
avoid the very poor performance scaling ( N( )3 ) that GPs
exhibit with problem size.84 There are methods to improve the
performance of GPs for large problems, but they are not
necessarily applicable in all cases.90 Interestingly, Reis et al.
avoided BO approaches entirely and instead leveraged an
AutoML model which predicted 19F MRI signal strength from
monomer composition.26 When using an AutoML framework,
rather than choosing a specific ML model (e.g., neural network
or random forest model) a variety of models are trained and
automatically chosen to maximize performance.91,92 By
evaluating this model on a grid of monomer composition, the
authors could choose the compositions that the model predicted
had the highest performance. While this approach loses some of
the flexibility and statistical rigor of the BO approaches, it
represents an simple and accessible agent to implement and
embraces the prototyping nature of ML.
There are also several efforts at user facilities and national

laboratories to build shareable, open platforms to enable active
learning studies. The Polybot system at Argonne National
Laboratory offers several stations (synthesis, characterization,
processing) between which samples can be shuttled using an
mobile platform with a robot arm.93 The Autonomous
Formulation Laboratory (AFL) at the National Institute of
Standards and Technology is another automation platform
designed for conducting machine guided experiments on liquid
formulations on neutron and X-ray scattering beamlines.94

These efforts are in the spirit of Open Science, which will be
discussed in more detail in the eponymous section below.
Interpretability and Explainability

Often polymer scientists desire not only the answer to a
problem, such as which polymer material exhibits optimal
properties, but also an understanding of why that material is
optimal. In the broader ML field this is known as explainable
artificial intelligence, or simply, XAI.95 Most efforts in XAI focus
either on glass-box models, which are natively explainable (and
possibly interpretable) or posthoc methods, which provide
explainability for a black box model such as a neural network.
This relates to the ultimate ML goal of knowledge generation.
Glass-box models, as their name suggests, provide insight into

how the ML model makes predictions. This is in comparison to
black-box models which only provide the prediction and no
insight or explanation. Two common approaches are linear
models, where the connection between input and output is
straightforward, and symbolic regression, where the goal is to
create an analytic function that depends on the features. One
method that applies both of these approaches is the least
absolute shrinkage and selection operator (LASSO) method.96

The basic concept behind LASSO is to combine linear
regression with a regularization term that encourages the
learned prefactors to be exactly zero, as opposed to small values
as in Kernel Ridge Regression.97 The regularization is controlled
through a prefactor with larger values corresponding to fewer
nonzero prefactors in the linear regression. Thus, LASSO can be
used to create linear models that are intrinsically interpretable. It

can also be used for symbolic regression by creating a large
number of potential terms by combining features through simple
or complicated functions (e.g., x1x32 where x1 and x3 are features)
and then selecting only the most salient terms. Two limitations
of LASSO are its inability to handle both very large numbers of
potential terms and highly correlated terms. To overcome these
challenges the sure independence screening and sparsifying
operator (SISSO) method was developed.98 SISSO first creates
a very large ( (10 )10 ) number of features. Then sure
independence screening (SIS) is used to correlate the features
with the target output keeping only the highest ranked features.
Next, a sparsifying operator (SO) is applied to determine the
optimal n-dimensional feature vector. This process continues for
successively larger n-dimensions until a target error is achieved.
Pilania et al. used SISSO in two different ways.99 In the first case,
they approached the problem via interpretability by selecting the
single most important feature that is a function of the original
selection of features. This resulted in an analytic model for the
glass transition temperature of polyhydroxyalkanoate polymers
with excellent error. In the second case, they used SISSO to
create enhanced features under the assumption that mathemat-
ical combinations of features that are better correlated with the
target property should improve performance compared to using
the original features directly.
Symbolic regression can also be implemented in other ways.

For example, in genetic programming symbolic regression
(GPSR)100 a different approach is taken to yield an analytic
expression that describes the output as a function of a subset of
the features. Here, both a list of features and a list of
mathematical operators (e.g., +, −, ×, ÷) are provided. They
are then represented as a tree with the features as the leaves and
operators as nonterminal nodes as depicted in Figure 4a for the
expression for polymer entropy. The optimal tree is then

Figure 4. (a) Tree representation of the equation for polymer entropy
(ϕ/N ln ϕ). Features (ϕ and N; depicted in orange) are leaves and
operators (e.g., ×; depicted in blue) are nonterminal nodes. (b) SHAP
values for the prediction of the radius of gyration (Rg) of sequence
defined copolymers. Features including degree of polymerization,
monomer in a good solvent ([W]), monomer in a bad solvent ([R]),
monomer in a theta solvent ([Tr]), and relative sequence entropy. The
figure shows that the degree of polymerization has the largest effect of
the features and that larger degrees of polymerization correspond to
larger values of Rg. Monomers in a good solvent have a similar
interpretation. Monomers in bad solvent and theta solvent are
anticorrelated and have a significantly smaller effect on Rg. Reprinted
in part with permission under a Creative Commons CC-BY 4.0 License
from ref 34. Copyright 2021 The Authors.
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determined using evolutionary algorithms such as a genetic
algorithm. The benefit of this method is that the search is
potentially performed over a larger space. Although, GPSR has
yet to be applied in the polymers domain to our knowledge, it
has been used for other materials.101,102

There are also other techniques such as explainable boosting
machines (EBMs).103 EBMs are a form of a generalized additive
model where the output is typically a sum of nonlinear and
nonsmooth functions of each feature. This means that the
relative contribution of each feature on the output is trivial to
discern. Although they can be slow to train, evaluation is quick
and accuracy can be on par with black-box models. Instead, the
main limitation is that the additive model assumption may not
be an accurate assumption for every system or problem.
There are also a variety of posthoc analysis methods. The

most common methods are SHapley Additive exPlanations
(SHAP)104 and Local Interpretable Model-Agnostic Explan-
ations (LIME).105 Both of these approaches are model agnostic.
SHAP takes a game theoretic approach to determine the impact
of all the features on a given output. Specifically, for a single
training data point, each feature is assigned a SHAP value where
the sum of all of the SHAP values is equal to the difference
between the given output and the expected output across all of
the training data. These SHAP values can then be computed
across the entire training data set to give an overall under-
standing of how different features affect the predicted results
including themagnitude of such predictions. An example of such
a plot is shown in Figure 4b. LIME uses a different approach.
First, one chooses a particular output that they want to explain.
Then the input is perturbed in various ways. Next, a local (often

linear) model is trained weighting data points that are closer to
the desired state that was queried. The local model can then be
used to describe why the originalMLmodel made its predictions
for a given instance.
In the context of polymers, SHAP has been used to investigate

the contributions of various features.34,79,106,107 For example, it
has been used to determine which functional groups and
polymer properties are most predictive of membrane perme-
ability.106 It has also been used to look at the effect of monomer
type and degree of polymerization on protein stability for
polymer−protein hybrids. In this example, they also used active
learning and probed how the SHAP values changed as a function
of the iteration.79 Recently, Amamoto et al. used both SHAP and
LIME to understand important regions in 2D wide-angle X-ray
diffraction and small-angle X-ray scatting measurements when
using convolutional neural networks to predict polymer type and
annealing temperature.108 Although more simplistic than both
SHAP and LIME, partial dependence plots (PDP), which show
the marginal effect of only one or two key features can provide
qualitative guidance. For example, Bejagam et al. look at the two
most important features and determine its nonlinear effect on
the melting temperature.109 Ultimately, they conclude that
molecular compactness plays a key role.
Data Fusion and Transfer Learning

The goal of data fusion is to achieve synergy by combining,
potentially several, but at least two different data sets. This is
analogous to the motivation for multimodal measurements in a
non-ML context.110 Data fusion can be accomplished both in
the context of supervised and unsupervised learning. However,
as detailed in a general review,111 there are still a variety of

Figure 5. (a) Example of multitask learning, where the property of interest is fed in as an additional one hot encoded vector. Properties to predict
include the glass transition temperature (Tg), the melting temperature (Tm), and the degradation temperature (Td). Reprinted from ref 27. Copyright
2019 American Chemical Society. (b) Example of reusing nodes from a neural network trained on small-molecule-specific heat capacity at constant
volume (Cv) to predict polymeric-specific heat capacity at constant pressure (Cp). Reprinted in part from ref 59. Copyright 2021 American Chemical
Society. (c) Example of multifidelity modeling. Reprinted from ref 114. Copyright 2020 American Chemical Society.
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outstanding issues such as combining different data types and
accurately handling uncertainty.
Nonetheless, data fusion has already shown promise in

polymer science, specifically in the form of multitask learning
where one model is used to predict multiple quantities.
Kuenneth et al. have shown that it can be used to simultaneously
predict 36 different polymer properties.107 Ultimately, they
found that multitask learning where the desired property is
encoded via augmenting the feature input with a property
selector works better than either having the ML model predict
all of the properties as an output, or predicting each property
individually. This is directly a consequence of using neural nets
as their ML model and, during model training, this mode of
operation allows the optimizer to more effectively use sparse
data. A graphical depiction of this scheme as applied to random
copolymers59 is shown in Figure 5a. Multitask learning has also
been used to predict properties from images of nanocomposites
using a convolutional neural network112 and to simultaneously
denoise and predict sample characteristics from X-ray hyper-
spectral images using an autoencoder.113

Related to data fusion, transfer learning is a ML technique
where information is transferred between tasks (e.g., predictions
of glass transition temperature or melting temperature),
domains (e.g., polymer literature or webpages) or both. Since
information is often transferred from a data-rich task or domain,
known as the source, to a data-poor task or domain, known as
the target, it allows for improved predictions for the target for
smaller data set sizes. Challenges with transfer learning include
selecting the appropriate source, selecting the optimal ML
model and, critically, how the information is transferred. We
refer the reader to an excellent general review on the topic.115

Within polymer science, transfer learning is increasingly being
used.27,116−120 For example, Li et al. used it to reconstruct
microstructures and generate structure−property predictions
for nanocomposites. In this particular case, they use a deep
convolutional neural net trained on a nonscientific corpus for
their source domain.116 Transfer learning has also been used to
make property predictions for extremely small data sets by
Yamada et al. Their approach involved generating a large
number of potential models that predicted other properties.
Thesemodels varied both in the model itself, as well as the target
property. One example using neural networks is shown in Figure
5b. They then tested all of the models and determined which
ones performed best. This allowed for accurate predictions with
data set sizes of (10).27 Most recently, Lu et al. first trained an
unsupervised encoder on TEM images. Then they transferred
this encoder to perform other tasks such as morphology
classification and nanowire segmentation. Ultimately, for
morphology classification, they found they needed less than
10 labeled images per class and, if the underlying distribution
was known a priori, only a single labeled image per class was
necessary.120 These results are particularly exciting, since
manual labeling of data is time-consuming and error prone.
Another related concept is that of multifidelity models. These

models can be thought of as transfer learning where the source
task and the target task predict the same quantity, but at two
different levels of fidelity, or accuracy. In this case, the source
task is the lower fidelity model that is data-rich, while the target
task is a higher fidelitymodel that is data-poor. For this particular
case, a common approach is to train the high fidelity model to
learn the scaled difference between the data and the low fidelity
model.121 As an example, Venkatram et al. used this technique to
predict the tendency to crystallize as a function of chemistry with

the high fidelity data set composed of experimental results and
the low fidelity data set composed of predictions from group
contribution methods.114 This scheme is shown in Figure 5c. By
making use of the low fidelity information, they were able to
reduce their root mean squared error by almost a factor of 2
compared to a model trained on only the high fidelity data.
Similarly, this approach has also been used to predict polymer
bandgap.122

Domain Knowledge

A promising area that is just starting to gain traction in ML as
applied to polymer science is the idea of using domain
knowledge�our cumulative knowledge of polymer science�
to enhance ML models. Although this is not a new idea in ML it
is a powerful one, as detailed in two general123,124 and one
materials focused125 reviews. It is also related to the concept of
inductive bias,126 where models are modified to bias toward
certain solutions over others independent of the training data
(e.g., enforcing known constraints). Ultimately, incorporation of
domain knowledge can potentially improve both interpolation
and extrapolation for the small data set sizes that are common in
polymer science. Furthermore, in principle, domain knowledge
can be leveraged to address process history dependent data.
Incorporating domain knowledge can range from concep-

tually simple to complex. Domain knowledge has commonly
been used to select the appropriate features127 for a ML model
or to enforce known constraints118,128 such as transitional
invariance. In both of these cases, less data is needed for the same
accuracy for interpolation and, in many cases, extrapolation as
the constraints and feature correllations do not need to be
learned.
An exciting idea for incorporating domain knowledge is to

make use of theory, which has the possibility of not only
improving the ML models, but also working toward explain-
ability and interpretability. For example, Menon et al. developed
a hierarchical ML approach.129 First, they use simple physical
models to predict basic physical properties. Then, they use the
physical properties as features for LASSO to predict a
complicated target property. The physics are directly included
via the simple physical models, and the final expression is
explainable due to the use of LASSO as depicted in Figure 6.
More recently, Audus et al. explored different methods for
incorporating imperfect theory into ML models with the goal of
improving interpolation, extrapolation and explainability.130

Using the simple case study of the size of a single chain in
different solvent qualities, they found that as one incorporates
more knowledge all of the key metrics improved. They also
found that, when the numerical values of the theory were
encoded, predicting the difference between the theory and the
data performed best, but that further improvement could be
achieved by using the functional form of the theory.
Incorporating the full functional form of the theory had the
added benefit of being easy to interpret.
Deep Learning

Another trend in ML in polymer science is the use of advanced
deep learning techniques. Examples include recurrent neural
networks (RNNs), which are designed to handle sequences such
as the sequence in a copolymer,21,23,60,61,119 variational
autoencoders (VAEs), which are composed of an encoder and
a decoder with a smaller latent space in between,113,131

reinforcement learning (RL),33 where an agent takes an action
and then receives a reward, generative adversarial networks
(GAN),132 composed of a generator and a discriminator, and
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graph neural networks (GNNs),62 which are designed to handle
graph based data such as a polymer structure. An example of RL
is shown in Figure 7. For a detailed description of thesemethods,
we refer the reader to recent reviews.7,8,14,15

Enhanced Scattering
In small-angle X-ray and neutron scattering (SAS) of polymer
and soft material systems, the challenge of interpreting data
often matches or exceeds the challenge of preparing samples or
conducting the experiment itself. This is in part due to the nature
of the measurement and in part due to the great variety of
microstructures that polymer materials exhibit. In order to

interpret SAS data, there exists a library of geometric and
phenomenological analytical models that researchers much
choose from in order to extract physical meaning from the
measurement.134 Due to the “phase problem”,135 there are likely
many models that will fit a measured data set (as described by χ2
minimization), even if they are not proper descriptors of the
underlying structure. This makes choosing the correct scattering
model a difficult but incredibly important task.
In light of this, several authors have developed ML models

which attempt to guide the users toward the most probable
analytical models that describe their data.133,136,137 In all cases,
the authors constructed a library of theoretical data and explored
a variety of supervised ML algorithms (including AutoML).
Figure 8 shows the goodness-of-fit surface calculated using a GP
that is interpolating across the parameter space of a complex
scattering model. By combining this surrogate model with a k-
Nearest Neighbors classifier, the authors are able to identify the
correct scattering model for a given data set with high
accuracy.133 They show that using the GP as a surrogate
model, rather than using the analytical models directly,
considerably increased the number of times that the correct
model appeared in the top three predictions of the classifier.
While similar to this work, the software package from Politi et al.
is also notable in that it includes automated feature engineering
in order to increase the classification accuracy of the overall
method.137

In addition to model-selection schemes, Jayaraman and co-
workers have developed the computational reverse-engineering
analysis for scattering experiments (CREASE) method which
seeks to reconstruct three-dimensional structures of polymer
materials from SAS data using genetic optimization.138−140

These authors leverage supervised, surrogate models in lieu of
expensive analytical and simulation computations in order
greatly reduce the convergence time of their method.
Unsupervised Analysis

Dimensionality reduction is a class of unsupervised approaches
for analyzing unlabeled data. These methods can validate old
wisdom and provide new insight into data sets because they rely
on fewer assumptions and a priori knowledge (i.e., labels) than
many supervised methods. For example, these approaches were
recently used to reconstruct the periodic table from just a feature
vector composed of simple atomic properties.141 In addition,
unsupervised methods provide a path toward leveraging data
that is too large, tedious or complex to analyze or label by hand
e.g., from high-throughput experiments or large scale
simulations. The trade-off for dimensionality reductionmethods
is that interpreting the meaning of data projected onto an
unknown subspace can be challenging. Despite this, recent
works have leveraged these methods to positive effect.
Several groups have used unsupervised methods to analyze

the local and global 3-D structure of polymer simulations.142−144

Parker et al. surveyed various unsupervised (and supervised)
methods for the task of identifying conformational transitions of
polymers adsorbed to nanowires.144 A key finding of this work is
that, while all unsupervised methods surveyed were able to
distinguish the different conformations of the polymer, most
required specific data prepossessing to be effective. Statt et al.
used the Uniform Manifold Approximation and Projection
(UMAP) method to understand copolymer assembly as a
function of monomer sequence.142 UMAP is a nonlinear
manifold learning technique that focuses on preserving both
the local and global structure of data.145 Using UMAP, the

Figure 6. Example of hierarchical ML as applied to 3D printed
biopolymers. The input, including polymer concentration (Cink), nozzle
speed (vT), flow rate (Q), and nozzle diameter (Dnozzle), is linked to the
middle layers represented by physical quantities such as ink viscosity
ηink through simple physical models. Statistical inference in the form of
LASSO then used to predict the desired quantity of the difference
between the expected and the observed dimensions (ϵ). Note that the
feature space for LASSO was extended by considering second order
terms. Reprinted in part from ref 25. Copyright 2020 American
Chemical Society.

Figure 7. Reinforcement learning scheme to generate polymers with
high thermal conductivity (TC). PGbaseline is a polymer generator
trained on the PI1M data set. PGTC is a polymer generator that is
trained to maximize TC. PGTC is sampled to create the generated
polymers (P), which are passed to the regressor to predict TC. The
generated polymers and TC are the used to calculate the loss function
used in training PGTC. Reprinted from ref 33. Copyright 2022 American
Chemical Society.
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authors were able to not only identify common global structures
in their simulations (e.g., strings, membranes, vesicles) but also
how much each monomer contributed to a structure. These
results were exemplified in 3-D simulation snapshots where the
beads were colored by “structure”, a unique and powerful way to
analyze heterogeneous simulation structures.
Researchers have also used UMAP to better understand the

chemical origins of optimized materials found via active learning
algorithms.26,34Figure 9 shows a UMAP projection of a
copolymer computational space that was explored using an
autonomous platform while trying to optimize 19F MRI signal.26

These data show that areas of highest signal fall into chemically
similar regions and that two of the six comonomers dominate the
high-signal regions. While this observation could likely have
been learned by careful analysis of the data itself, the UMAP
projection makes the conclusion clear and obvious.
Somewhat analogously to the above autonomous studies,

Rodriguez et al. used Principle Component Analysis (PCA) and
T-distributed stochastic neighbor embedding (t-SNE) as
visualization and screening tools.86 They leveraged these
methods to visualize and aid in the process of down-selecting
candidates for high-throughput analysis from a material library
that was too large to analyze in full.
Optimization and Inverse Design

As previously stated, one of the ultimate goals of ML for
polymers is materials/process design. This often takes the form
of optimization, most commonly property optimiza-
tion.22−24,63,109,117 It is important to note that while most
efforts have focused on optimizing the chemistry or formulation,
one can also optimize the materials processing steps (e.g.,
annealing, film casting, mixing conditions). One can also
simultaneously optimize multiple quantities.34,63 Materials
optimization falls into the category of inverse design where
the goal is to find an input (e.g., synthesis or processing

parameters) that yields a desired output (e.g., material
property). Inverse design can include other components such
as generative models and high-throughput screening.33,131 For
example, Ma and co-workers use a polymer generator that
maximizes the thermal conductivity (see Figure 7).33 For
additional details on inverse design, we direct the reader to a
recent, comprehensive review by Sattari and co-workers.15

■ OUTLOOK

Interpretability and Explainability
AsML continues tomature for polymer science, we expect to see
an increase in the focus on interpretability and explainability. A
better understanding of the ML model means that the user will
have an improved intuition on when the model may extrapolate
accurately or when it might fail which should accelerate the
discovery of new knowledge.
However, the appropriate use of improvements in interpret-

ability and explainability will depend on the specific problem and
data availability. For example, linear models and their
extensions, including generalized additive models or use of
basis functions, provide clear connections between inputs and
outputs. However, the underlying assumptions of these models
may not be valid. For example, EBMs will be unable to correctly
capture a complicated nonlinear relationship between two
features. Thus, they must be used carefully, recognizing that
while the models are explainable, they may not represent the
true underlying physics. Symbolic regression will be particularly
powerful when applied to problems where an analytic solution
exists but is unknown. Since this assumption may not be valid,
one potential path forward is to break up the problem into
different regimes each with its own analytic solution. Symbolic
regression can then be used separately in those different regimes
to get different expressions depending on the features. To
determine such regimes, one can use unsupervised clustering

Figure 8. Result of an ML-guided fitting process for small-angle scattering data. The neighborhood of the closest scattering model found is used to
generate interpolations to determine whether a better fit to the data can be found. Reprinted with permission from ref 133. Copyright 2020
International Union of Crystallography.
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techniques first. In the future, it will be interesting if symbolic
regression can be extended to consider more complicated
operators such as integrals and derivatives, which will extend the
power of symbolic regression, although at the expense of
additional complexity.
Since the aforementioned glass-box models ultimately have

their limitations, there will still be a place for complex, black-box
ML models such as deep neural networks or graph neural
networks. In these cases, we expect to see increased use of
posthoc explainability techniques such as SHAP and LIME.
Although these techniques focus on local rather than global
explainability, they can still provide knowledge in addition to the
predictions from the models.
Data Fusion and Transfer learning
Whether data fusion is successful or not will ultimately depend
on the context. Data fusion will be the most successful when
desired quantities are correlated, allowing knowledge of feature
representation for one task to be related to feature
representation for another task. This can partially be determined
in advance by explicitly looking at correlations between desired
quantities. Ultimately, methods such as multitask learning may
benefit some predictions but not others. Nonetheless, data

fusion is potentially a powerful way for imputing unknown
values in scarce data sets that are common in polymer physics.
As general advances are made in transfer learning, they can

often be adapted to the polymers space. In the future, it will be
interesting to see what the full toolbox of techniques look like
beyond the current commonly used methods such as freezing
parts of neural networks, learning the difference between the
source and the target, and augmenting the target with the source.
Even as the toolbox is built out, the role of prototyping will still
likely be important as demonstrated by Yamada et al.27

As such advances in transfer learning continue, they are also
likely to impact multifidelity models, since a multifidelity model
can be thought of as a transfer learning problem where the low
fidelity, data rich task serves as the source while the high fidelity,
data poor task serves as the target. However, advances in
multifidelity are not necessarily limited to transfer learning.
Instead the multifidelity nature can be explicitly taken into
account by utilizing the relative cost of generating low fidelity
data versus high fidelity data, e.g., in the context of active
learning.
Domain Knowledge

The decision of when to apply domain knowledge can be
thought of by considering first where one is on the spectrum of
knowledge and data. At one extreme, we have perfect
understanding of a system; in this case, data is not required.
At the other extreme, there is data but a complete lack of
knowledge. Almost all cases fall in between. As long as polymer
science and ML continue to reside in a data poor and domain
knowledge rich regime, we expect the use of domain knowledge
in ML to grow by leveraging advances in related fields such as
transfer learning and explainability. Important considerations
when choosing to incorporate domain knowledge include
whether soft or hard constraints should be used, how best to
capture a polymer scientist’s intuition, how much data is
available, if extrapolation is important and, finally, the role of
explainability.
The choice of the type of constraint can be very important;

some problems involve hard constraints such as translational
invariance in simulations whereas others such as phase equilibria
may seem to have such constraints but in practice do not due to
kinetics. In the latter situation, soft constraints nudging the
system in the correct direction but allowing violation of the
constraint are critical to avoiding overconfidence and negative
transfer in a transfer learning context. There is also the issue of
how best to incorporate domain knowledge, which is a
developing field. This can range from the examples already
provided to having polymer scientists create training data for an
ML model, for example, by encoding their intuition via
providing a probability of a material being of use. This can be
further advanced by leveraging ideas such as active learning. The
amount of data is also important. In more complex, data rich
environments, it may bemore fruitful to useML to learn the best
features rather than rely on intuition. For example, Wang et al.
showed that, for the task of structure property prediction, using a
convolutional neural network works better than the traditional,
intuitive two point statistics as input for a neural network.112

There is also the consideration of extrapolation. Using domain
knowledge can potentially prevent unphysical extrapolation.
Finally, in some cases incorporating domain knowledge can be
used for explainability. One interesting approach is to use ML to
learn a simplified representation. For example, Cubuk et al. use
ML to generate a structural quantity that predicts microscopic

Figure 9. (a) UMAP projection of a copolymer compositional space
with the ML predicted 19F MRI signal-to-noise color coded. Circled
samples represent experimentally validated water-soluble structures.
(b) UMAP projection of a copolymer compositional space with the
major comonomer component color coded. Circled samples represent
experimentally validated water-soluble structures. Reprinted in part
from ref 26. Copyright 2021 American Chemical Society.
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rearrangements and show that it correlates strongly to measures
of plasticity in glassy systems.146

When these considerations are taken into account, incorpo-
rating domain knowledge in ML has a exciting future as ML can
enhance qualitative data, such as from coarse-grained simu-
lations or theories, and potentially even elevate it to be
quantitative. In this context, ideas from multifidelity modeling
will also be relevant.
Open Science

Increasingly, there is a community led effort toward adopting the
principles of Open Science. While different authors define Open
Science differently, a recent comprehensive review defines Open
Science as “the transparent and accessible knowledge that is shared
and developed through collaborative networks.”148 A United
Nations Educational, Scientific, and Culturual Organization
(UNESCO) workshop report states that “the core values Open
Science stem f rom the rights-based, ethical, epistemological,
economic, legal, political, social, multi-stakeholder and technological
implications of opening science to society and broadening the
principles of openness to the whole cycle of scientif ic
research”.147Figure 10 highlights these core values. Working
toward these goals can be achieved via open source journals such
as ACS Polymers Au, use of preprint servers such as arXiv149 and
ChemRxiv,150 sharing of data or the sharing of code. There are
also efforts such as the MLExchange that seek to provide an easy
interface for users to store, share, and execute their ML

models.151 It has previously been found that in general, the
benefits to individual researchers for following Open Science
principles are numerous including increased citations and
funding opportunities.152

There are at least four large barriers that often prohibit
scientists from broadly sharing data: understanding best
practices, knowing where to put the data, knowing how to
represent the data, and having the time to clean and, ultimately,
share the data. The currently accepted best practice and gold
standard is FAIR data. The principles behind FAIR data are
explicitly detailed in Box 2 of Wilkinson et al.38 and provide a
simple checklist for a researcher to determine if their data is
FAIR or not. However, some items in the checklist still need to
be addressed by the larger community. For example, “R1.3.
(meta)data meet domain-relevant community standards”
supposes that a community standard exists. Such topics are
currently being addressed by the Materials Research Data
Alliance (MaRDA).153 For where to put the data, there are
several options available such as the Materials Data
Facility,154,155 Zenodo,156 figshare,157 MaterialsMine,53,158−160

a Community Resource for Innovation in Polymer Technology
(CRIPT),54 institution-specific resources, etc. To help make
data FAIR, Scientif ic Data serves as a peer-reviewed, open-access
journal for describing research data sets, which has already been
used for polymers (e.g., ref 40). In terms of how to represent the
data, this is still an area of active research being addressed by
MaRDA,153 MaterialsMine,53,158−160 CRIPT,54,161 and

Figure 10. Schematic of the UNESCO defined pillars of open science. Adapted with permission under a Creative Commons CC-BY-SA 3.0 IGO
License from UNESCO Recommendation on Open Science; https://unesdoc.unesco.org/ark:/48223/pf0000379949 (accessed 2022-11-26).147

Copyright 2021 UNESCO.
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others.162 However, the single largest barrier to FAIR data is the
time that is necessary to clean and share the data. Thus, the
efforts of MaterialsMine and CRIPT are notable as they provide
additional benefits with the goal of making things net easier for
polymer scientists to deposit their data. For example,
MaterialsMine provides advanced visualization and CRIPT
provides advanced search capabilities allowing one to find
similar chemistries, polymer architectures and properties,
among others.
Combined with the advances in shared data, it could be

argued that the explosion of ML research in materials science
was partly catalyzed by the existence of open source ML
codebases.163−168 While this is a code-centric perspective, the
ability of a nonexpert to sample various powerful ML algorithms
cannot be minimized. A group whose expertise is in polymer
synthesis does not need to learn advanced graphics processing
unit (GPU) programming to train a convolutional neural net,
they simply install Tensorflow or Pytorch and download a
network model from Github.164,165 A formulation engineer can
leverage Bayesian optimization and GP calculations without a
formal background in statistical modeling.166−169

While the importance of open software for materials science is
not a new idea,170 the broad application of ML techniques by
nonexperts has brought about new challenges. While open
packages make it easy for everyone to leverage powerful
techniques, they do not always force users to use them correctly.
It is important that developers include heavy guardrails, error
checking, and documentation in their codebases to ensure that
their tools are used correctly. Furthermore, it is imperative that,
upon publication of their work, researchers provide their
analyses and ML codebases for other groups to use and
scrutinize. When code is released, is important that the code is
written with good software engineering principles in mind so
that it can be easily maintained and used by the community.
These principles include concepts like version control,
automated unit testing, code style guidelines, user and API
documentation and semantic versioning. Organizations like
Software Carpentry36,171 seek to increase the code literacy
among scientists, but, as of the writing of this article, do not
include detailed software engineering principles in their
educational materials beyond covering version-control. The
importance of code-sharing, software engineering principles,
and detailed documentation need to be emphasized in research
funding and by publishers and principle investigators.
Best Practices and Challenge Problems

Similar to all specializations within polymer science, ML also has
its own set of best practices to ensure good science. A recent
guide focused on materials in general172 details several of these.
This guide breaks best practices into categories such as data,
modeling, benchmarking, and reproducibility. For example, data
best practices include choosing a data set, data set composition,
use of uncertainities and splitting train-validation-test splits,
while modeling includes model choice, data scaling, and
hyperparameter optimization. Prototyping is particularly
important in ML. There are many times, where it is not a priori
clear whichmodels or which data manipulation techniques, such
as normalization, will work best. Ultimately, the shortest route to
production code will be trying different things and finding which
works best. In the context of polymer design, a key test of the
model is if it can be used in production, which may require the
synthesis of new molecules.22,117 While this may be a tedious or
costly step, it is important if model is to be truly validated.

Reducing the barrier to experimental validation is part of the
motivation for the development of automatic and autonomous
experimentation platforms.
Related to this, benchmarking is particularly important as

benchmarking allows other researchers to understand when
various models work better than others and if there are any
general conclusions. For example, as detailed in Polymer
Representations, benchmarking has clarified that, to date,
there is no single best representation that works for all
problems.173 Benchmarking is not only limited to feature
selection, but also includes model selection and data
selection.45,174

From a broader community perspective and related to
benchmarking is the idea of grand challenges, such as the
critical assessment of protein structure prediction (CASP)
competition for protein folding,175 which accelerates progress
within subfields on important problems. Specifically, the need
for grand challenges has been called out in the Materials
Genome Initiative Strategic Plan released in November of
2021.176

Beyond Polymer Autonomous

While the polymers community has started to develop and adopt
autonomous and high-throughput techniques, the greater
(hard) materials and chemistry communities have been
rigorously pursuing this field as evidenced by the many recent
reviews.71,73−76,89,177,178 While there are some barriers to
directly adopting techniques from these fields, there is still
much to learn and adapt from them and we will discuss a few key
results here.
There have been many nonpolymer studies on the topics of

autonomous formulation exploration and phase-mapping and
many of them make use of theory informed or constrained
models, similar to what was discussed in the Domain Knowledge
section above.87,179−186 In order to increase the accuracy of their
phase-identification from X-ray diffraction measurements
(XRD), Suram et al. used a customized non-negative matrix
factorization (NMF) approach in which they incorporated
physical knowledge of solid state phase diagrams such as Gibb’s
phase rule and XRD peak-shifting due to alloying.182,183 Under
similar motivations, Chen et al. used an unsupervised,
autoencoder approach in which they construct a latent subspace
of meaningful variables and then express constraints with these
variables.180 Kusne et al. also leveraged domain knowledge in
their agent but, interestingly, also demonstrated that employing
multitask learning to combine the task of property optimization
with that of identifying phase boundaries is more efficient than
performing either task alone.179,185 Finally, McDannald et al.
identify the magnetic ordering transition using neutron
diffraction by encoding physical details of the measurement
(e.g., hysteresis, appropriate parameter distributions) and
further by automatically selecting from a set of analytical models
for the final analysis.87 Each of these studies presents lessons that
should be adaptable to the process of phase mapping of polymer
materials. As discussed above, the incorporation of domain
knowledge into ML models greatly increases the accuracy of the
model and reduces the data needed to achieve that accuracy.
The polymers community has a rich array of theories andmodels
that can be used to enhance autonomous agents and phase-
mapping tasks.
As outlined in Table 1, one of the key challenges of applying

autonomous techniques is the construction, operation, and
maintenance of the robotic platform itself. In addition to
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domain-specific and ML expertise, building an autonomous
platform requires a confluence of skills (machining, fabrication,
electronic design, embedded software, robotics) that do not
commonly overlap with polymers research groups. In a recent
perspective, MacLeod et al. write about the importance and
challenges of building flexible, multiuse robotic platforms.187 In
a separate work, they also demonstrate how flexible platforms
can identify the temperature−conductivity Pareto front in
metallic thin films.188

Outside of autonomous, there are also several ML develop-
ments from the greater materials community worth highlighting.
Gomes et al. have developed an unsupervised background
subtraction methodology based on NMF techniques and have
applied it to XRD and Raman spectroscopy data sets of metal-
oxide samples.189 The fact that this method is unsupervised
means it does not require examples of background spectra and
can be applied to unlabeled data. Furthermore, while
demonstrated on XRD and Raman measurements, the
construction of the approach is sufficiently general such that it
should be applicable to many other measurements and kinds of
materials. In their recent paper, Liang et al. develop a ML
algorithm to automatically process images from reflection high-
energy electron diffraction measurements of epitaxial thin films
of iron oxides.190 The authors combine image segmentation,
transfer learning, unsupervised clustering, and traditional
mathematical analyses in order to extract diffraction peaks
from the images, process them, and cluster them into phases.
The work is a nice demonstration of how many individual ML
methods can be brought together to automate a tedious analysis
that is traditionally done by hand.

■ SUMMARY
The communities of polymer physics and chemistry are working
to realize the promise of machine learning and, along the way,
they are discovering and addressing key challenges arising from
the unique nature of polymer materials. Researchers are
developing methods to represent the statistical nature of
polymer structure and encode polymer domain knowledge in
machine learning models. Autonomous experimentation
techniques, which are far more established in other materials
and chemistry fields, are being adopted and extended by
polymers researchers to synthesize, characterize, and formulate
materials more rapidly, with higher resolution, and at reduced
cost. Partly in an effort to tackle problem of having few, small,
poorly annotated data sets, efforts to use transfer learning which
leverage larger data sets from others fields are starting to bear
fruit. Overall, the future of machine learning is bright for
polymer materials, but there is still much work to be done.
In order to unlock the true potential of machine learning, the

polymer community must become more collaborative. High-
quality open data, codebases, and benchmarks are essential to
continued forward progress. Shared data sets must be provided
with robust metadata, in accordance with FAIR data principles.
Both analysis and production codes should be written with
shareability, maintainability, and reuse in mind. Benchmarks
should be created that provide a “ground-truth” that researchers
can use to validate their methods and to make claims of
improvement against. These practices will aid the adoption and
advancement of machine learning within the polymer
community, thereby accelerating materials and knowledge
discovery in future studies.
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