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A B S T R A C T   

With the rise in diabetes mellitus cases worldwide, oral delivery of insulin is preferred over subcutaneous insulin 
administration due to its good patient compliance and non-invasiveness, simplicity, and versatility. However, 
oral insulin delivery is hampered by various gastrointestinal barriers that result in low drug bioavailability and 
insufficient therapeutic efficiency. Numerous strategies have been developed to overcome these barriers and 
increase the bioavailability of oral insulin. Yet, no commercial oral insulin product is available to address all 
clinical hurdles because of various substantial obstacles related to the structural organization and physiological 
function of the gastrointestinal tract. Herein, we discussed the significant physiological barriers (including 
chemical, enzymatic, and physical barriers) that hinder the transportation and absorption of orally delivered 
insulin. Then, we showcased recent significant and innovative advances in oral insulin delivery technologies. 
Finally, we concluded the review with remarks on future perspectives on oral insulin delivery technologies and 
potential challenges for forthcoming clinical translation of oral insulin delivery technologies.   

1. Introduction 

Diabetes is one of the most prevalent chronic metabolic diseases that 
occurs either when the pancreas does not produce enough insulin (a 
hormone regulating blood glucose) or when the body cannot effectively 
use its insulin [1–3]. Since insulin was discovered almost a century ago 
[4], insulin replacement therapy has proven to be a lifesaver for people 
with type 1 diabetes mellitus and an essential treatment for many pa-
tients with type 2 diabetes mellitus [5,6]. To date, subcutaneous insulin 
administration (needle-based injections or pump-based infusion) is still 
the primary clinical treatment for millions of people with diabetes in the 
world, while extensive efforts have explored the feasibility of alternative 
insulin delivery strategies (such as oral, transdermal, inhalation, and 
mucosal delivery) [7–9]. However, the painful and repetitive needle- 
based injections can cause trauma and side effects to people with di-
abetics such as weight gain [10], hypoglycemia [11], and lipoatrophy 
[12,13] since subcutaneous insulin does not precisely mimic the action 
of physiological insulin secretion [14–16]. Currently, the insulin infu-
sion pump with improved compliance and glycemic control has been 
developed as a convenient route for subcutaneous insulin delivery 
[17,18], but subcutaneously inserted catheter and subsequent infused 
insulin also induce subcutaneous tissue response and skin-related com-
plications at the infusion site [19,20]. Specifically, our group currently 
developed a zwitterionic cream gel that can resolve early skin irritations, 

drastically extend the longevity of the subcutaneous insulin infusion 
catheter, and enable faster pharmaceutical absorption as well [21]. 

Compared with subcutaneous administration, oral delivery of pep-
tide/protein drugs shows the advantage of good patient compliance and 
ease of administration [22,23]. More importantly, oral insulin admin-
istration closely mimics the physiological path of endogenous insulin 
secretion because the delivered insulin is directly absorbed to the liver 
via the portal vein, and the first pass effect leads to greater insulinization 
of the liver and reduced peripheral hyperinsulinemia, thereby avoiding 
adverse effects of weight gain and hypoglycemia [24,25]. Therefore, 
oral insulin is recognized as a life-changing solution for diabetes patients 
who routinely receive insulin by the subcutaneous route [26]. Unfor-
tunately, despite researchers aspiring to develop oral insulin for several 
decades, commercial oral insulin product is yet to be available since no 
formulation can successfully overcome the various gastrointestinal (GI) 
barriers and properly clear all clinical hurdles [27–29]. 

There were intense research activities in search of efficient oral in-
sulin technologies, and numerous articles have been published on de-
velopments of oral insulin with the potential to improve the 
bioavailability in different animal models [30–34]. However, the oral 
delivery technologies for which success has been reported in preclinical 
studies have often failed to achieve sufficient safety and efficacy in 
clinical trials, indicating that the transition from animal studies to 
clinical application remains a major scientific challenge [35–37]. This 
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review introduces the gastrointestinal tract barriers that must be tackled 
to achieve efficient oral insulin delivery. Then it summarizes current 
significant and innovative advances in oral insulin delivery technolo-
gies. Lastly, we present future perspectives on oral insulin delivery 
technologies and potential challenges for future clinical translation. 

2. Barriers to oral insulin delivery 

For an orally administered protein and peptide drug to work, it must 
transit along the GI tract, adhere and infiltrate through the mucus layer, 
traverse the intestinal epithelium, enter the portal vein, and finally 
reach the peripheral circulation [38]. Nevertheless, as the first line of 
defense against exogenous toxins and pathogens, the GI tract poses 
several physiological barriers to orally administered insulin, which can 
be classified as chemical, enzymatic and physical barriers [39–41]. The 
chemical (ultra-acidic pH in the stomach) and enzymatic (proteolytic 
enzymes in the GI tract) barriers can destabilize the formulation and 
denature or degrade the insulin [42,43]. Moreover, the physical bar-
riers, including the mucus layers and intestinal epithelium, can prevent 
the penetration and absorption of orally delivered insulin [42,44]. As a 
result, protein and peptide drugs, including insulin, have a negligible 
oral bioavailability of <1% in the clinic [35,37,42]. To develop an 
effective oral insulin system, a deep insight into the characteristics of 
these barriers is essential. Several comprehensive reviews already exist 
to extensively discuss these barriers [39–42]; here, we briefly summa-
rize and show them in Fig. 1. 

2.1. Chemical barriers 

It is well known that the luminal pH varies from ultra-acidic (1–3) in 
the stomach to slightly basic (6.5–8) in the intestine [42,43]. Due to 
undesirable physicochemical properties such as high molecular weight 
and hydrophilicity, orally administered peptide/protein drugs are 
highly susceptible to pH variation in the GI tract. For oral insulin, its 
disulfide bonds can be readily cleaved by gastric acid, the fluid in the 
stomach composed of HCl and NaCl, thus leading to degradation and 
denaturation [44]. This barrier can be effectively addressed with various 
encapsulation strategies that have been developed to circumvent the 
acidic environment of the stomach and protect insulin throughout the 
entire GI transition against the pH variation [45,46]. 

2.2. Enzymatic barriers 

The second challenge for orally administered protein drugs is enzy-
matic degradation, which starts in the stomach with pepsin and 
cathepsin that are highly efficient at proteolysis and continues 
throughout the small intestine by chymotrypsin, elastase, and car-
boxypeptidases. Most oral protein drugs are vulnerable to enzymatic 

degradation by the proteases in the GI tract; thus, they pose a major 
obstacle to achieving desired efficacy for oral delivery [47,48]. Oral 
insulin is mainly degraded by trypsin, chymotrypsin, and carboxypep-
tidases in the intestinal lumen and mucus layer [37,39]. To circumvent 
the enzymatic degradation, many studies have reported the protection 
of insulin with different enzyme inhibitors (Fig. 2a) such as aprotinin, 
trypsin inhibitors, bacitracin, and camostat mesilate [22,39,49]. For 
example, an oral insulin formulation developed by Oramed, known as 
ORMD-0801, used a soybean trypsin inhibitor as a component of an oral 
peptide formulation for direct enzyme inhibition [37,50,51]. However, 
the utility and safety of enzyme inhibition as a general strategy for 
enhancing oral insulin absorption still need to be made clear [37]. In 
addition, with the rapid development of nanotechnology, many types of 
nanocarriers, including liposomes [52,53], nanoparticles [30–32,46], 
polymersomes [54,55], and metal–organic frameworks [33,44,56], 
have been designed to encapsulate and protect insulin from enzymatic 
degradation and allow it to reach the intestine unmolested. 

2.3. Physical barriers 

The mucus layer is a negatively charged viscous mixture that enables 
the exchange of nutrients, water, and small molecules while imperme-
able to bacteria and pathogens. Due to the mucus's continuous resyn-
thesis, secretion, and detachment from the epithelial surface, it can 
efficiently trap bacteria, pathogens, and foreign particles and rapidly 
clear them from penetrating the epithelia. This, however, poses signif-
icant challenges to oral peptide/protein drugs absorption into the sys-
temic circulation [57,58]. Thus, before approaching the surface of the 
intestinal epithelium, the orally administered drugs must first pass 
through the highly dynamic intestinal mucus layer (Fig. 2b). To address 
this barrier, some mucus-penetrating particle carriers with a neutral 
charge and hydrophilic surface have been reported to reduce adsorption 
of mucins and improve the penetration through the mucus layer 
[59–62]. Despite these improvements, the current oral delivery of pro-
tein drugs remains low in absorption and bioavailability [22,37,42,63]. 
In addition, the safety and efficacy of these mucus-penetrating strategies 
have not yet been validated in large clinical trials [37,64]. 

After penetrating through the mucus layer, the intestinal epithelium 
presents another hurdle for insulin absorption. The intestinal epithelium 
comprises a tightly bound single layer of columnar epithelial cells [40]. 
To enter systemic circulation, drug absorption may occur across the 
epithelium either through the transcellular or paracellular routes 
(Fig. 2b). Despite most clinical oral drugs being absorbed by trans-
cellular passive diffusion, the absorption by passive diffusion is pri-
marily limited to lipophilic drugs with a molecular weight <700 Da 
[39,65]. Therefore, hydrophilic insulin, with a molecular weight of 
5800 Da, is difficult to traverse through the cell membranes [66]. To 
facilitate transcellular insulin delivery, strategies involving cell 

Fig. 1. Schematic representation of physiological barriers in the gastrointestinal tract to oral drug delivery. Oral delivery faces three main barriers, including 
chemical barriers (highly acidic in the stomach with pH 1–3), enzymatic barriers (multiple enzymes such as pepsin and cathepsin in the stomach and trypsin, 
chymotrypsin and carboxypeptidase in small intestine), and physical barriers (mucus layer, epithelial layer, and their tight junction). 
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receptors or transporters such as the Fc receptor [67–69] and bile acid 
transporter [70,71] have been reported, but their potential impact on 
the tight junctions has rarely been studied. As the major selectively 
permeable barriers, the tight junctions between the neighboring 
epithelial cells only permit the passage of molecules with a hydrody-
namic radius smaller than 1 nm [31,72]. Thus the systemic bioavail-
ability of hydrophilic proteins and peptides such as insulin is negligible. 

To address this barrier, many permeation enhancers [73–75] have 
been used to facilitate insulin diffusion by temporarily opening tight 
junctions of the gastrointestinal epithelium (Fig. 2b). It should be noted 
that tight junction is formed by holding epithelial cells tightly connected 
to one another to close the gaps among epithelial cells and maintain the 
integrity of the endothelial barrier function. Transient opening tight 
junctions with permeation enhancers could generally facilitate oral in-
sulin delivery. Still, safety concerns remain since sustained functional 
impairment of tight junctions by permeability enhancers potentially 
enhances absorption of noxious agents (such as bacteria, fungi, viruses, 
and toxins) and increases the risk of autoimmune disease, bacterial 
infection, and inflammatory bowel diseases [76–79]. 

3. Recent innovations in oral insulin delivery 

With the emerging global diabetes epidemic, success in oral insulin 
can significantly improve the quality of life of diabetic patients who 
must routinely receive injections of this drug. Although the search for an 
effective and reliable oral insulin delivery system has been a major 
challenge for several decades, as the holy grail, the efforts in this di-
rection have never stopped and are even accelerating. In the following 
sections, we highlight significant and representative technologies in this 
area over the past few years with an emphasis on those with solid 
promise to move into clinical evaluation and present insights into the 
counter-strategies for the future development of oral insulin products. 

3.1. Ionic liquids for oral insulin delivery 

Ionic liquids constitute a group of salts with an organic cation and 
organic/inorganic anion that are typically liquid below 100 ◦C [80]. Due 
to the unique and tunable physicochemical and biological properties 
such as viscosity, hydrophobicity, solubility, and biodegradability, ionic 
liquids have been increasingly exploited as solvents, co-solvents and 
materials for delivery of small- and large-molecule therapeutics in the 
past few years [81–86]. 

Recently, Banerjee et al. developed a novel oral insulin formulation 
using choline and geranate (CAGE) ionic liquid [86]. The insulin-CAGE 
can be prepared in a single-step process without modifying insulin 
structure or forming complex nanostructures. In vitro study indicated 
insulin-CAGE was stable at room temperature for 2 months and at 4 ◦C 

for at least 4 months without any loss in bioactivity. Palanisamy et al. 
subsequently performed molecular dynamics simulations to unravel the 
molecular-level interactions of CAGE ionic liquid with insulin in an 
aqueous medium and found that 0.3–0.5 mol fraction of CAGE ionic 
liquid strongly accumulates on the insulin surface and simultaneously 
excluded the water molecules from the surface [87]. In vivo, insulin- 
CAGE demonstrated marked efficacy in enhancing oral uptake of insu-
lin upon intrajejunal administration in nondiabetic rats [85]. After 
encapsulating insulin-CAGE in enterically-coated capsules and orally 
administering it to non-diabetic rats, insulin-CAGE produced a similar 
extent of blood glucose drop compared with s.c. injected insulin, 
whereas the effectiveness of insulin-CAGE could be sustained till the end 
of the study at 12 h. The authors attributed the high oral delivery effi-
cacy of CAGE to synergism between its ability to protect the insulin from 
enzymatic degradation, assist in its transport across the mucus layer, and 
improve paracellular uptake by opening tight junctions. Histological 
examination showed no remarkable difference in morphology between 
CAGE and saline-treated rats after 7 d of once-a-day repeated oral 
dosing. Subsequently, Samir Mitragotri's team further reported a 
method of encapsulating CAGE into a gel using poly(vinyl alcohol) 
(PVA), forming a mucoadhesive ionogel patch (CAGE-patch) to adhere 
to the intestine for oral insulin delivery [88]. The potential in vivo 
performance, although it has not been reported, is worth looking for-
ward to. 

3.2. Silica nanoparticles as physiochemical permeation enhancers for oral 
insulin delivery 

Nanoparticle-based drug delivery platforms received considerable 
attention since the unique physiochemical properties and high surface 
area to volume ratio of nanoparticles enable the high loading of drugs 
through encapsulation or the formation of chemical-physical bindings 
with their functional groups [42,89]. These oral drug nanoparticles 
mainly include lipid nanoparticles [90,91], polymer nanoparticles 
[30,32,69,92], mesoporous silica nanoparticles [31,93,94], metal- 
organic frameworks [33,44,56] and hybrid nanoparticles [95,96]. Pre-
vious studies of nanoparticle-based oral insulin delivery platforms pri-
marily utilize nanoparticles as carriers for insulin loading and 
transportation through transcytotic and/or paracellular pathways. 

Inorganic materials-based nanoparticles are considered more stable 
and biologically inert than organic materials and have also been 
explored as drug carriers for treating diabetes mellitus [97]. Specifically, 
mesoporous silica nanoparticles have been widely studied as oral insulin 
delivery carriers due to their large internal surface area and pore vol-
umes (enabling high encapsulation efficiency) and excellent physico-
chemical stability. Nevertheless, due to their non-biodegradability, the 
clearance and immune response of inorganic materials-based 

Fig. 2. Strategies that have been used to overcome gastrointestinal barriers for improving oral peptide delivery, including enzyme inhibitors (a), permeation en-
hancers to enhance paracellular or transcellular transport (b), and physical insertion (such as microneedle injector) (c). 
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nanoparticles need closer attention. Safety concerns become significant 
for people with diabetes, who often require long-term insulin adminis-
tration [42,98]. 

Recently, Whitehead and co-authors reported a serendipitous dis-
covery that small, negatively charged inorganic silica nanoparticles can 
act as physiochemical permeation enhancers to facilitate the oral de-
livery of insulin by inducing tight junction relaxation [31]. They first 
investigated the effects of commercially available silica nanoparticles 
with different sizes (20–200 nm) and different surface charges on the 
intestinal-barrier function via cellular and in vivo experiments. They 
found that negatively charged nanoparticles in 50 nm diameter can 
transiently (within a 4 h period) and reversibly induce increased 
permeability of the intestinal wall. In healthy mice, an intestinal injec-
tion of insulin after oral administration of 50-nm silica nanoparticles 
resulted in an excellent relative bioavailability of 85%. However, in a 
more realistic model, when the insulin was placed into the enteric 
capsules and administered to the pre-diabetic and diabetic mice, 
respectively, through oral gavage at a high dose of 10 U/kg, the relative 
bioactivities were <30%. By studying the different integrins and kinase 
inhibitors targeting different signaling enzymes on intestinal epithelial 
cells, they found the nanoparticles increase intestinal permeability by 
binding integrins and activating myosin light chain kinase (MLCK) 
(Fig. 3b). This is consistent with previous study that MLCK-induced 
phosphorylation of myosin leads to the contraction of the cytoskel-
eton, the opening of tight junctions and increasing intestinal para-
cellular permeability for insulin delivery (Fig. 3) [99–101]. The novel 
use of silica nanoparticles might represent a new direction for nano-
particles in oral insulin delivery. Instead of drug carriers, they act as 
physiochemical permeation enhancers to facilitate oral insulin delivery 
by inducing tight junction relaxation. It should be noted that this work 
did not observe any signs of altered intestinal morphology or inflam-
mation 24 h post-nanoparticle administration [31]. For future trans-
lation, the safety and feasibility of potential long-term repeated dosing 
will require investigation in preclinical and clinical models due to the 
general nonbiodegradability of inorganic materials-based silica 
nanoparticles. 

3.3. Zwitterionic nano/micro systems for oral insulin delivery 

So far, the general strategy to improve the absorption of oral peptide 
therapeutics is using permeation enhancers to open tight junctions be-
tween the neighboring intestinal epithelial cells or by targeting transport 
routes across the intestinal wall, such as aforementioned ionic liquid and 
negatively charged silica nanoparticle platforms. However, tight junc-
tion openings can potentially elicit a series of side effects, such as bac-
terial infection, autoimmune disease, and inflammatory bowel diseases 
[76–79]. Therefore, a strategy that enables enhanced oral absorption of 
insulin without opening the tight junctions is preferred and possesses 
significant promise for future clinical translation. 

In nature, capsid viruses, which show net-neutral surfaces without 
any hydrophobic patches (typical zwitterionic characteristics), can 
diffuse unhindered through mucus and readily infect mucosal epithelia. 
Inspired by nature, our lab reported a zwitterionic DSPE− PCB (DSPE- 
PCB: zwitterionic betaine polymer (polycarboxybetaine, PCB) of 
5000Damolecular weight conjugated to 1,2-distearoyl-sn-glycero-3- 
phosphoethanolamine (DSPE) lipid) micelle platform featuring a virus- 
mimetic zwitterionic surface, a betaine side chain and an ultralow 
critical micelle concentration, enabling insulin penetration through the 
mucus and efficient transporter-mediated epithelial absorption without 
the need for tight junction opening (Fig. 4) [102]. Due to the zwitter-
ionic surface characteristics and unique ultra-low critical micelle con-
centration, the zwitterionic betaine polymer micelle enabled enhanced 
mucus penetration and efficient proton-assisted amino acid transporter 
1 (PAT1)-mediated epithelial absorption. The prototype oral insulin can 
be easily manufactured by encapsulating a freeze-dried powder of 
zwitterionic micelle insulin into an enteric-coated capsule. Different 
from other preclinical oral insulins, this formulation utilized PAT1 as a 
mechanism for epithelium penetration, achieving a remarkable 
bioavailability of over 40% in diabetic rats as well as not inducing tight 
junction opening and leaky gut. In contrast, the bioavailabilities of the 
Polysorbate 80/insulin capsule and the free insulin capsule were below 
10% and nearly 0%, respectively. 

More important, even after the long-term repeated dose challenge 

Fig. 3. Mechanisms of tight junction opening for enhancing intestinal wall permeability. (a) Claudins (a family of proteins) make up the external barrier of the tight 
junctions and are expressed in tissue-specific combinations. (b-e) Potential mechanisms of action of different types of absorption enhancers: silica nanoparticles (b), 
Cell-permeable inhibitors of phosphatase (c), classical permeation enhancer caprate (d), and salcaprozate sodium (e). Reprinted with permission from ref. [101], 
Copyright 2020, Springer Nature. 
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Fig. 4. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. (a) The schematic representation of DSPE-PCB micelles addresses both 
the mucus and the epithelial cell layer barriers without opening tight junctions for oral insulin delivery. (b) Representative TEM images of epithelial tissues at 1h post 
ileum injection of different types of surfactants, indicating zwitterionic micelle/insulin treatment did not open intestinal tight junctions (indicated by arrows). (c,d) 
Pharmacological activity (blood glucose-lowering in c) and bioavailability (serum insulin concentration in d) of the DSPE-PCB/insulin capsule in diabetic rats 
through oral gavage, compared with the Polysorbate 80/insulin capsule and native insulin capsule. Adapted with permission from ref. [102]. Copyright 2020, 
Springer Nature. 

Fig. 5. The luminal unfolding microneedle injector (LUMI) for oral delivery of macromolecules. (a) Overhead (top) and side-view (bottom) images of an unfolded 
LUMI. (b) LUMI actuation scheme. (c, d) Schematic timeline of LUMI devices for oral delivery of biologics in the gastrointestinal tract after administered in enteric 
capsules. a-c, adapted with permission from ref. [109]. Copyright 2020, Springer Nature. d, adapted with permission from ref. [110]. Copyright 2020, 
Springer Nature. 
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(mice received oral gavage of the DSPE-PCB micelle twice daily for 14 
consecutive days), no tight junction opening or leaky gut was observed. 
With the advancement in bioavailability and gut safety profile, this 
platform technology can potentially be a practical solution for oral de-
livery of other protein/peptide payloads [103,104]. 

Following this pioneering study, Fang et al. developed an oral pro-
tein delivery strategy using in situ polymerization of zwitterions to 
encapsulate proteins [105]. With the polyzwitterion modification, the 
polyzwitterion/protein nanocomplexes were able to pass through the 
mucus and cellular barriers by the PAT1 pathway. After oral adminis-
tration of enteric-coated polyzwitterion/insulin capsules, the blood 
glucose level could be lowered effectively in different diabetic animal 
models (mice, rats, and pigs). Ma and coworkers developed crosslinked 
zwitterionic microcapsules (CB–MCs@INS) based on a carboxyl betaine 
(CB)-modified poly(acryloyl carbonate-co-caprolactone) copolymer via 
the combination of microfluidics and UV-crosslinking to improve oral 
insulin delivery [106]. By introducing zwitterionic CB-moieties, 
CB–MCs@INS possessed a superior affinity for epithelial cells and 
enhanced insulin transport by the CB-mediated cell surface transporter 
via the PAT1 pathway. 

3.4. Devices for oral insulin delivery 

Compared with the technologies mentioned above that aim to 
overcome GI barriers and enhance uptake, device-based delivery tech-
nologies (Fig. 2c) have received considerable attention due to their 
inherent attractiveness and generalized suitability for delivering a broad 
range of peptides and proteins [107,108]. Abramson and colleagues 
recently reported two innovative devices for systemically delivering 
insulin with high bioavailability via injections to the stomach and small 
intestine. The first ingestible capsule, termed a luminal unfolding 
microneedle injector (LUMI), contains multiple drug-loaded micro-
needles encapsulated within a poly(methacrylic acid-co-ethyl acrylate) 

and polyethylene glycol (PEG) coating and is designed to dissolve at pH 
levels encountered in the small intestine(≥5.5) to propel the LUMI out of 
the capsule (Fig. 5a,b) [109]. The authors tested microneedle penetra-
tion via ex vivo human and in vivo swine studies and observed the de-
vice consistently delivered the microneedles to the tissue without animal 
discomfort, residual devices, and tissue perforation. After swallowing 
and reaching the intestine in the swine model, the capsule holding the 
spring dissolves due to the rise in pH, causing actuation that pushes the 
LUMI out of the capsule. Then, three LUMI arms unfold outward with a 
microneedle array to penetrate the epithelial barrier, dissolve, and 
release encapsulated insulin or other macromolecule drugs (Fig. 5c,d) 
[109,110]. In vivo study showed that the device can serve as a platform 
to orally deliver insulin, presenting a faster pharmacokinetic uptake 
profile (insulin levels increased and glucose levels decreased within 
15–30 min) and a systemic uptake >10% of that of a subcutaneous in-
jection over a 4-h sampling period. 

Inspired by a leopard tortoise-like structure with a changing center of 
mass, high-curvature upper shell, and low-curvature bottom shell, the 
group of authors also designed an orally ingested self-orienting milli-
meter-scale applicator (SOMA) that autonomously can insert drug- 
loaded milliposts into the stomach lining without puncturing the outer 
layer of the stomach (Fig. 6a) [111]. Unlike most orally delivered drugs 
absorbed through the small intestine, this device delivers the drugs 
directly through the gastric mucosa. Thus, the dose delivery time is 
likely to be more predictable than intestinal absorption, given the 
recognized variability in gastric emptying. In vivo studies in non- 
diabetic swine demonstrated that the compressed mixture containing 
insulin and polyethylene oxide could be delivered from the SOMA de-
vice with detectable levels of serum insulin associated with progressive 
reduction of blood glucose, indicating this device is an effective and 
reliable system for oral delivery of insulin. 

Note that these devices, although represent innovative platforms 
with the potential for oral insulin delivery, still suffered from 

Fig. 6. Schematic illustration of two smart ingestible devices for oral drug delivery. (a) The self-orienting millimeter-scale applicator (SOMA) localizes to the 
stomach lining, orients its injection mechanism toward the tissue wall, and injects a drug payload through the gastric mucosa. Adapted with permission from ref. 
[111]. Copyright 2019, The American Association for the Advancement of Science. (b) The liquid-injecting SOMA (L-SOMA) for oral delivery of liquid formulations of 
pharmaceuticals into the gastric submucosa. Adapted with permission from ref. [112]. Copyright 2021, Springer Nature. 
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limitations, including low dose capacity (300–700 μg per pill), delayed 
or zero order kinetic drug delivery rates that limited their absolute 
bioavailability to 10% or less, and the requirement for enduring the 
degradative-enzyme-filled GI fluid to interact with the drug formulation 
before tissue wall injection [113]. These limitations prevented the de-
vices from delivering drugs with large dosage requirements and drugs 
that require fast action (such as mealtime insulin). To overcome these 
challenges, Abramson and co-workers further optimized and reported a 
new version of the SOMA device by redesigning actuation and delivery 
systems (Fig. 6b) [112]. The liquid-injecting self-orienting millimeter- 
scale applicator (L-SOMA) consisted of a liquid drug, an injection nee-
dle, and a plunger that could squeeze and deliver larger dosing volumes 
of liquid formulations of pharmaceuticals via an injection into the 
gastric submucosa. Once the liquid drug was fully released, the plunger 
pulled the needle back into the pill, which was eventually expelled 
through the digestive tract. Compared to a solid-dose pellet, the 
increased surface area of interaction between the liquid formulation and 
the tissue accelerated drug pharmacokinetics and pharmacodynamics. 
The in vivo swine model showed that this L-SOMA is capable of deliv-
ering a high dose (up to 4 mg) of a bioavailable drug with rapid phar-
macokinetic uptake after administration, reaching an absolute 
bioavailability of up to 80% and a maximum plasma drug concentration 
within 30min after dosing. 

4. Conclusions and perspectives 

Compared with subcutaneously administered insulin, oral insulin 
delivery is painless and convenient, offering superior patient compliance 
and potentially improving the quality of life of diabetic patients who 
routinely receive needle-based injections. Yet formidable challenges 
remain; oral insulin delivery is still an active and up-and-coming area 
since the discovery of insulin in 1921. To date, scientists have explored 
various strategies to administer insulin orally based on the rapid ad-
vances in the science of protein chemistry, formulation, and drug de-
livery. However, the progress of oral insulin technologies toward 
meaningful efficacy in the clinics has been slow and limited, with most 
of the vast oral insulin literature reporting on non-clinical data. 

There is significant pre-clinical work evaluating oral insulin formu-
lations, including several examples reviewed above, where reagents or 
penetration enhancers were used to open tight junctions and improve 
paracellular transport. Despite the beneficial impacts of boosting the 
oral bioavailability of insulin, the potential risk of opening tight junc-
tions shall be thoroughly examined, particularly the long-term safety 
under a periodic dosing regimen [77]. In addition, the time window of 
tight junction opening may not necessarily match the timing for the drug 
payload to reach the “opened” GI epithelium. This may require sepa-
rately administered tight junction openers and payloads to optimize the 
absorption efficacy. It was further reported that some individuals with 
obesity and/or diabetes have impaired intestinal expression of tight 
junction proteins, defective intestinal barrier function, and a ‘leaky gut’ 
[114,115]. This suggests that inter-individual differences in gastroin-
testinal permeability may influence the expected outcome of the ma-
jority of oral insulin formulations, even more so for those relying on 
tight junction openers. Regarding pre-clinical animal models, the ma-
jority of studies employed mice and rats for efficacy evaluation, with a 
few exceptions where large animal models, such as pigs, were involved 
to closely mimic human GI absorptions [105,109,111,112]. 

It is worth noting that some oral insulin formulations have demon-
strated efficacy in clinical trials. For example, I338, a long-acting basal 
insulin analogue formulated in a tablet with sodium caprate developed 
by Novo Nordisk, showed comparable clinical results in fasting glucose 
reductions and rates of adverse events with once-daily subcutaneous 
injections of insulin glargine for 8 weeks in a phase II trial involving 49 
individuals with type 2 diabetes mellitus [35]. It should be noted that 
the needed doses of I338 to achieve the desired therapeutic effect were 
relatively high (approximately 58 times the dosage of insulin glargine), 

and the calculated bioavailability was low (<2%); this suggested a high 
cost in production and resulted to the discontinuation of the commer-
cialization of I338. 

ORMD-0801, another notable oral insulin, was developed by Oramed 
Pharmaceuticals. It is the world's first oral insulin capsule entering Phase 
3 clinical trials study. The formulation of ORMD-0801 comprises insulin, 
packaged in an enteric-coated capsule, together with EDTA and bile salts 
as penetration enhancers. The capsule facilitates passage through the 
stomach and into the small intestine, and the enhancers promote drug 
permeability by opening the tight junctions [116]. ORMD-0801 has 
been tested in 16 Phase 1 and 10 Phase 2 clinical trials, involving 884 
subjects, including healthy volunteers and individuals with type 1 and 
type 2 diabetes [24,117]. Optimal doses showing reasonable efficacy 
and safety have been identified and adopted in two larger and longer 
Phase 3 studies. Unfortunately, as Oramed announced early this year, 
ORMD-0801 comprehensively failed in the 26-week, Phase 3 random-
ized, double-blind, placebo-controlled ORA-D-013-1 clinical trial, with 
the candidate failing to beat the placebo at improving glycemic control 
[118]. As the most promising oral insulin formulation, ORMD-0801's 
flunks in Phase 3 trials indicate considerable obstacles to developing and 
commercializing oral insulin products for treating diabetes. 

Despite several recent technologies that have achieved some positive 
results with high oral bioavailability in preclinical studies in rodents or 
pigs, including several promising technologies (nano-systems and 
injector devices) discussed in this perspective, more research is needed 
to validate these technologies to make meaningful progress toward the 
clinics and enable an oral insulin product with commercial and clinical 
viability. Current T1D was treated with multiple injections or pump 
infusions of insulins with the dosage and pharmacokinetics adjusted in a 
sophisticated way to address the patients' basal and prandial insulin 
needs. Compared to oral basal insulin, such as I338, developed by Novo 
Nordisk, oral meal-time insulin can be technically more challenging due 
to the additional demand for dosage titration and fast action. For 
example, oral insulin taken before a meal should be able to deliver the 
right amount of insulin in accordance with the varied carbohydrate 
intake and function in time to suppress blood glucose rising. This is 
beyond the focus of the bioavailability in current oral insulin develop-
ment, has been less studied, and might limit clinical translation. If oral 
insulins cannot cover both basal and prandial insulin needs, the T1D 
patients will still have to receive additional insulin injections or in-
fusions. The value of improved compliance and non-invasiveness will be 
significantly compromised. Last but not least, since multiple repeated 
oral administrations are required on a daily basis throughout the pa-
tient's life, several concerns for oral insulin, including long-term effi-
cacy, safety, and the effect of food intake, need to be adequately studied 
and addressed in the future. 
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