CONTENTS

COVER STORY

168–168
Microchamber arrays for controlled NIR laser mediated drug delivery to single cells
Kinam Park
Purdue University Biomedical Engineering and Pharmaceutics West Lafayette, IN 47907, USA

RESEARCH PAPERS

1–16
Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza
aDepartment of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
bSchool of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ford Drive, Atlanta, GA 30312-0180, USA
cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA

17–29
RNA-based micelles: A novel platform for paclitaxel loading and delivery
Yi Shua, Hongran Yinea, Mehdi Rajahb, Hui Liic, Marcio Verwegerd, Siqin Guo1, Dan Shua, Persuan Guoa
aCenter for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
bNanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States

dAdditional material available online.

Available online at www.sciencedirect.com
Publication information: Journal of Controlled Release (ISSN 0168-3659)
For 2018, volumes 269–292 are scheduled for publication. Subscription prices are available upon request from the Publisher or from the Elsevier Customer Service Department nearest you:
USA & Canada: (20) 485 2939 / 2059; e-mail: LSCS@elsevier.com
Europe & Rest of World: (20) 324 8978 / 8979; e-mail: LSCS@elsevier.com
www.elsevier.com
Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
Numerical modeling and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development in the disciplines of pharmacology, pharmaceutics, and health sciences.
The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper)
Endothelial cells are transiently altered upon in vivo electroporation

Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose
Jee Young Chung1,2, Jae Ho Ko3, Ye Ji Lee4, Hyung Seok Choi4, Yong-Hee Kim5,6
1Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
2Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
3BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
4Department of Pharmaceutics, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universitat Munchen, 81377 Munich, Germany
5Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States
6Department of Biomedical Engineering and Microengineering, School of Engineering, University of Washington, Seattle, WA, United States

Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose
Jee Young Chung1,2, Jae Ho Ko3, Ye Ji Lee4, Hyung Seok Choi4, Yong-Hee Kim5,6
1Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
2Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
3BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
4Department of Pharmaceutics, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universitat Munchen, 81377 Munich, Germany
5Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States
6Department of Biomedical Engineering and Microengineering, School of Engineering, University of Washington, Seattle, WA, United States

Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose
Jee Young Chung1,2, Jae Ho Ko3, Ye Ji Lee4, Hyung Seok Choi4, Yong-Hee Kim5,6
1Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
2Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
3BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
4Department of Pharmaceutics, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universitat Munchen, 81377 Munich, Germany
5Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States
6Department of Biomedical Engineering and Microengineering, School of Engineering, University of Washington, Seattle, WA, United States

Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose
Jee Young Chung1,2, Jae Ho Ko3, Ye Ji Lee4, Hyung Seok Choi4, Yong-Hee Kim5,6
1Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea
2Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
3BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04543, Republic of Korea
4Department of Pharmaceutics, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universitat Munchen, 81377 Munich, Germany
5Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, United States
6Department of Biomedical Engineering and Microengineering, School of Engineering, University of Washington, Seattle, WA, United States