Preparation and swelling behavior of chitosan-based
superporous hydrogels for gastric retention application
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Abstract: Chitosan and glycol chitosan hydrogels were
prepared, and their swelling behaviors in acidic solution
were studied to investigate their application for gastric re-
tention device. The optimum preparation condition of su-
perporous hydrogels was obtained from the gelation and
blowing kinetics measured at varying acidic conditions.
Both the swelling rate and swelling ratio of glycol chitosan
hydrogels were higher than those of chitosan hydrogels.
Swelling behaviors were significantly affected by not only
foaming/drying methods but also crosslinking density, as

the sizes and structures of pores generated were highly
dependent on those preparation conditions. The prepared
superporous hydrogels were highly sensitive to pH of swell-
ing media, and showed reversible swelling and de-swelling
behaviors maintaining their mechanical stability. The deg-
radation kinetics in simulated gastric fluid was also studied.
© 2005 Wiley Periodicals, Inc. ] Biomed Mater Res 76A:
144-150, 2006
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INTRODUCTION

A number of controlled drug delivery systems'™*

have been developed for prolonging and controlling
the release of drugs for a period of times to enhance
their curing efficiency. The drugs for oral delivery
have its own convenience in easy and economic ad-
ministration, but the weakness in the loss of their
functions due to the short residence in the body.
About 80% of drugs administrated are reported ex-
creted without being absorbed.”® Many attempts”®
have been proposed to prolong the residence time of
drugs in the body for complete absorption, but not
many systems have been successfully applied in prac-
tice.

Hydrogels are three-dimensional networks of hy-
drophilic polymers that are not soluble but swelling in
water. When pores with size of hundreds of microme-
ters are present in the hydrogels, these are called
superporous hydrogels, distinguished from other
types of porous hydrogels such as microporous, me-
soporous, and macroporous hydrogels.” "' Because of
their specific pore structures, the superporous hydro-
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gels accommodate lots of water in very short time, and
this high swelling kinetics led one to developing them
as gastric retention devices for controlled release.
When applied as drug carriers, those highly swollen
hydrogels may remain in stomach for a long time,
releasing almost all drugs loaded as their volumes are
too big to transport through the pylorus. To be used as
an effective gastric retention device, the hydrogels are
required to possess not only fast swelling but also the
following properties: biocompatibility, biodegradabil-
ity, high swelling capacity, high mechanical strength,
and stability in an acidic condition of pH 1.2.°> Al-
though a number of superabsorbent polymers'*'?
have been reported on their high swelling perfor-
mance in water, those are not enough to be used as
gastric retention devices as their swelling performance
is poor in acidic media.

Chitosan (CS), a natural polysaccharide, is a biocom-
patible, biodegradable, and nontoxic material.'"**> Be-
cause chitosan has abundant amine groups within poly-
mer chain, it dissolves in acidic solution and forms a gel
with dialdehydes such as glutaraldehyde and glyox-
al.'*'® Thus, in the low pH solution, chitosan hydrogels
swell due to the presence of the positive charges in the
network." Glycol chitosan is a 6-(2-hydroxyethyl)ether
derivative of chitosan and dissolves much more in water
than chitosan.'"®* In this study, glycol chitosan (GCS)
superporous hydrogels were developed using glyoxal as
a crosslinking agent. Both freeze drying and gas blowing
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techniques were used for the preparation of superporous
hydrogels. Swelling properties of superporous hydro-
gels prepared were measured and analyzed to test the
possibility of their application for a gastric retention
device.

MATERIALS AND METHODS

Materials

Chitosan was purchased from Fluka (St. Gallen, Switzer-
land) and glycol chitosan (DP 2500) from Aldrich-Sigma
Chemical Company (Milwaukee, WI). Glyoxal (40% water
solution, Aldrich) was used as a crosslinking agent and
NaHCO; (Aldrich) as a gas blowing agent. Acetic acid, a pH
controlling agent, was purchased from Daejung Chemical
Company (Japan).

Synthesis of hydrogels

Both chitosan and glycol chitosan hydrogels as shown in
Figure 1 were prepared. To prepare each stock solution of 2 wt
%, chitosan and glycol chitosan were dissolved in 0.1M acetic
acid and distilled water, respectively. The amount of 5 g of
stock solution was placed in a test tube (ID = 2 cm), and then
10 wt % glyoxal aqueous solution was added to induce net-
work structures where the crosslinking ratios ranged from 1 to
8 wt %. After the gelation reaction (Schiff base reaction) as
shown in Figure 2 was conducted for 12 h, the hydrogels were
completely dried in a freeze drier for at least 24 h.

To prepare superporous hydrogels by a gas blowing
method, the pH of glycol chitosan stock solution was ad-
justed to 5 by adding acetic acid. NaHCO; powder (40 mg),
a blowing agent, was added to the stock solution and the
mixture was vigorously stirred for 10 to 30 s. Foaming
started immediately after the addition of blowing agent, and
the gelation was completed in 30 s to 2 min. The foamed
hydrogels were placed at room temperature overnight, and
then dried using a freeze drier.

Swelling experiments

The hydrogels prepared were allowed to swell in the
acidic solutions at 37°C. The samples swollen in the acidic
media were periodically weighed until no weight increase
was observed. The swelling capacity of the hydrogels was
determined by swelling ratio (Q) calculated according to
Equation (1):

Q=W./ W, (1

Here, W, and W, are weights of dried and swollen samples
at the initial and arbitrary time, respectively.

Degradation kinetics

The degradation kinetics of the prepared hydrogels was
examined measuring swelling ratio and weight loss (%). The
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Figure 1. Chemical structure of (a) chitosan and (b) glycol
chitosan.

hydrogels were placed in pH 1.2 solution at 37°C for 12 h,
and then the samples were periodically weighed at 6 h
interval. The percentage weight loss of the sample was de-
termined by the percentage ratio of weight loss to initial
weight in swollen state.

Pore structure and size

The structure and size of pores in hydrogels prepared
were examined using the scanning electron microscopy
(ESEM, XL-30, Philips, Netherlands). Before taking the pho-
tographs, the samples were quenched and fractured in lig-
uid nitrogen, and the fractured surface was palladium
coated using an ion coater (IB-3, Eiko, Japan).

RESULTS AND DISCUSSION

Preparation conditions of superporous hydrogels

Foaming and gelation reactions should take place
simultaneously to obtain well-established porous
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Glycol chitosan

Figure 2.

structures. Figure 3 shows the gelation induction time,
the duration time from the addition of crosslinking
agent to the start of gelation, as a function of pH
values of reactant system. The gelation reaction took
place only at the pHs higher than 6, and the fastest
reaction was observed at pH 7. When gelation times
are not short enough, bubbles are not stabilized but
collapsed during gelation reaction. On the other hand,
the foaming reaction took place only at the acidic
conditions (pH lower than 6). As NaHCO; is decom-
posed to release CO, gas in acidic conditions and this
decomposition reaction neutralizes the medium (in-
creases the pH), the addition of certain amount of
NaHCO; eventually induced the gelation reactions at
medium pH. Figure 4 shows the amount of blowing
agent to adjust the stock solution to pH 7, the fastest
(optimum) gelation condition, in this study. The ap-
propriate amount of blowing agent was determined at
different the acidic conditions of stock solution to
adjust its pH to 7.
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Figure 3. Gelation completion times at varying pH condi-

tions of monomer stock solutions.
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Schematic of the synthesis of glycol chitosan hydrogel using glyoxal as a crosslinking agent.

Swelling behaviors of chitosan and glycol chitosan
hydrogels

Swelling behavior of chitosan hydrogels prepared
by freeze drying method was compared with that of
glycol chitosan by the same method. Figure 5(ab)
show the equilibrium and dynamic swelling behaviors
of the two systems in distilled water and simulated
gastric fluid of pH 1.2, respectively. For both cases, the
swelling rate and equilibrium swelling amount of gly-
col chitosan hydrogels were higher than those of
chiosan hydrogels, simply because the glycol chitosan
is more hydrophilic than chitosan due to the presence
of glycol groups. In acidic environment, both the chi-
tosan and glycol chitosan hydrogels showed higher
swelling ratio than in distilled water. It was because
the amine groups in the chitosan molecules are ion-
ized to ammonium ion (NH;") in acidic aqueous me-
dia and these cationic charges in gel phase act as
cationic repulsive forces between polymer molecules.

NaHCO, (mg)

Figure 4. Amounts of blowing agent added to adjust the
pH of stock solution to 7.
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Figure 5. Swelling behaviors of chitosan and glycol chi-

tosan hydrogels in (a) distilled water and (b) SGF, respec-
tively.

Effect of drying method on the swelling behavior

Figure 6 shows the SEM microphotographs of hy-
drogels dried by different methods: air drying and
freeze drying. The hydrogels prepared by freeze-dry-
ing method possessed numerous pores in dried states,
while air-dried hydrogels did not. The pore sizes of
superporous hydrogels shown in Figure 6(c) were
even larger than those of freeze-dried hydrogels as the
pores were generated not only by evaporation of sol-
vent but also by blowing of bubbles. Different pore
size and porosity of hydrogels led to different dy-
namic and equilibrium swelling behaviors. As the
pores of freeze-dried samples are connected each
other, they have higher swelling rate than air-dried
samples. As the pore size of superporous hydrogels
(freeze-dried /gas-blown hydrogels) was even larger
than that of freeze-dried hydrogels, the equilibrium
swelling ratios of the first samples were higher than

the last ones. The blowing effect was negligible for the
air-dried samples, as the bubbles generated were eas-
ily collapsed during drying process in air (refer to
Fig. 7).

Effect of crosslinking density on the swelling
behaviors

Figure 8 shows the crosslinking density effect on the
swelling behavior of superporous hydrogels in simu-

Figure 6. SEM photographs of hydrogels prepared by
different drying methods: (a) air drying, (b) freeze drying,
and (c) gas blowing and freeze drying, respectively.
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Figure 7. Swelling behaviors of hydrogels prepared by

different drying methods: (a) air drying, (b) freeze drying,
and (c) gas blowing and freeze drying, respectively.

lated gastric fluid (SGF). The superporous hydrogels
crosslinked with 1 and 2 wt % glyoxal were mechan-
ically so weak that the samples were cracked during
the swelling process. For this reason, the suitable
amounts of crosslinking agent in this study were
higher than 2 wt %. At the crosslinking ratios higher
than 2 wt %, the swelling ratios of superporous hy-
drogels decreased with increasing crosslinking den-
sity, as much tighter networks were formed at higher
concentration of crosslinking agents.

This swelling behavior was complimented by SEM
microphotographs, shown in Figure 9. Smaller pores
were observed for more crosslinked superporous hy-
drogels. At 2 wt % crosslinking ratio, the pores were
so large that the samples might not have enough
strength to absorb lots of water in short time. The
presence of larger pores in less crosslinked hydrogels
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Figure 8. Crosslinking density effect on the dynamic

swelling behaviors of glycol chitosan superporous hydro-
gels.
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Figure 9. SEM photographs of superporous hydrogels
prepared with different concentrations of crosslinking agent
of (a) 4, (b) 6, and (c) 8 wt %, respectively.

is another factor resulting in a high swelling ratio as
well as high swelling kinetics.

The glycol chitosan superporous hydrogels showed
clear pH sensitive swelling behavior. As shown in
Figure 10, higher swelling ratios were observed at
lower pHs, for example, a higher acidic condition, as
the amine groups in polymer molecules are much
more easily cationized at higher acidity. For all pH
environments, the crosslinking density effect on the
swelling behavior was similar to the previous results.
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Figure 10. Swelling behaviors of glycol chitosan super-
porous hydrogels with 4, 6, and 8 wt % crosslinking ratio in
(a) pH 4.0 and (b) pH 7.0 solution, respectively.

Figure 11 shows the swelling and de-swelling be-
haviors of superporous hydrogel. The hydrogel was
swollen and de-swollen reversibly depending on the
pH conditions of media. Highly pH sensitive swelling
behaviors maintaining mechanical stability were
clearly observed.

Degradation kinetics of superporous hydrogels

As shown in Figure 12, the weight loss of glycol
chitosan hydrogels occurred after 12 h. In acidic envi-
ronment, superporous hydrogels kept equilibrium
swelling ratios for a certain period of time, being
protonated as ammonium ions. p-Glucosidic linkages
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Figure 11. Swelling and de-swelling behaviors of glycol

chitosan superporous hydrogels (crosslinking ratio of 6) in
different acidic swelling media.

in glycol chitosan were slowly cleaved by acid hydro-
lysis. As amine groups stabilize D-glucosidic linkages
cleaved by acids, a part of glycol chitosan oligomers,
especially not highly crosslinked, were slowly dis-
solved in the swelling media, inducing the weight loss
of samples.

CONCLUSION

The optimum gelation and blowing conditions for
the preparation of superporous hydrogels were ob-
tained by determining the amount of blowing agent
needed to adjust the pH of a stock solution for fastest
gelation. The swelling behaviors of chitosan and gly-
col chitosan were compared in an acidic environment.
Both the swelling rate and swelling ratio of glycol
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Figure 12. Degradation kinetics of glycol chitosan super-

porous hydrogels (crosslinking ratio of 4) in SGF.
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chitosan hydrogels were higher than those of chitosan
hydrogels because of the presence of highly hydro-
philic groups, glycols in glycol chitosan. In acidic en-
vironment both the chitosan and glycol chitosan hy-
drogels showed higher swelling ratio than in distilled
water because of the cationization of amine groups in
acidic condition. At crosslinking ratios higher than 2
wt %, the swelling ratios of superporous hydrogels
decreased with increasing crosslinking density, as not
only much tighter networks but also much smaller
pores were formed at higher concentration of
crosslinking agents. The hydrogels were swollen and
de-swollen reversibly, depending on the acidity of
media. The degradation kinetics investigated in this
study will be another important aspect for applying
the present materials to a gastric retention device.
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