
Stress Generation by Solvent Absorption and Wrinkling of a
Cross-Linked Coating atop a Viscous or Elastic Base

Soumendra K. Basu,* Alon. V. McCormick, and L. E. Scriven

Coating Process Fundamentals Program, Department of Chemical Engineering & Materials Science,
UniVersity of Minnesota, 421 Washington AVenue SE, Minneapolis, Minnesota, 55455

ReceiVed February 28, 2006. In Final Form: April 20, 2006

An in-plane constrained cross-linked gel layer absorbs an equilibrium amount of solvent and experiences in-plane
compressive stress. A stability analysis of such an elastic gel layer that is attached to either a viscous or an elastic
bottom layer atop a rigid substrate is considered. The effects of the top and bottom layer moduli (Et andEb), the
bottom-to-top layer thickness ratio (H/h), and the polymer solvent interaction parameter (ø) on the critical condition
of wrinkling, wrinkle wavelength, and amplitude are examined. When the bottom layer is viscous, the compressed
top layer is always unstable, and wrinkling is rate-controlled. The viscous flow of the bottom layer governs the rate
and determines the fastest growing wavelength. AsEt rises, the bending stiffness of the elastic layer does as well,
and so the fastest growing wavelength (λm) rises and the equilibrium amplitude (Ae) falls. AsH/h rises, the constraint
of the rigid substrate diminishes, and soλm andAe rise. Asø falls or as the solvent has higher affinity for the polymeric
gel, λm falls andAe rises because better solvents create higher compressive strain that promote low-wavelength,
high-amplitude wrinkles. When the bottom layer is elastic, a critical compressive stress exists. If the generated
compressive stress by solvent absorption is greater than the critical stress, the top layer wrinkles. It was found that
wrinkling is most likely at intermediateEt, low Eb, high H/h, and lowø. Further, lowerø, higherH/h, and lowerEb

were found to promote higher equilibrium amplitude and higher wavelength wrinkles.

1. Introduction

A solidified polymeric coating with two layers atop a rigid
substrate can wrinkle if the top layer is put into high enough
in-plane compressive stress. Under high enough in-plane
compressive stress, the planar shape of the top layer becomes
unstable with respect to buckling, and it deforms out of plane
to produce wrinkles. The bottom layer can be either viscous1-3

or elastic4-6 at the time of wrinkle formation. Therefore, as a
two-layer polymeric coating solidifies, predicting the in-plane
stress generated in the top layer is critical for predicting whether
the top layer would wrinkle.

Many authors have analyzed stress generation in different
layers of a multilayer system subjected to isotropic7,8 and
anisotropic9 in-plane forces. During drying, curing, and subse-
quent processing, different layers in a multilayer coating can
generate either in-plane tensile or compressive stress. Wrinkling
under tension is explained by the so-called “tension field theory”.10

This paper examines the wrinkling of two-layer coatings atop
a rigid substrate under compression by buckling instability.17

Generally, a multilayer coating under compression can buckle
by two distinct processes. First, one or more layers can buckle
out of plane and delaminate from the adjacent layer(s) to produce

blisters.18-23 Second, one or more layers can buckle without
loosening the adhesion to the adjacent layer(s). The adjacent
layer(s) deform(s) to accommodate the out-of-plane deformations
of the buckled layer(s).24-28 All the examples of solidifying
polymeric coatings examined6,29 were found to wrinkle by the
second process, wherein the top layer buckled and the bottom
layer conformed to the buckled shape.

The top layer can be put into compression by at least two
distinct processes: first, by changing the temperature of the
coating, provided that the different layers have different thermal
expansivities and, second, by absorbing solvents in the top layer.
Compressive stress generation and wrinkling by changing the
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temperature of a two-layer coating with different thermal
expansivity layers have been dealt with in detail in the
literature.4-6,30-36 This paper therefore examines the wrinkling
of the top layer when it generates in-plane compressive stress
by absorbing solvents. It is further assumed that only the top
layer wrinkled and the bottom layer conformed to the wrinkled
shape upon wrinkling. The top layer is assumed to be a cross-
linked elastic gel, and the bottom layer is assumed to be either
elastic or viscous.

The remainder of the paper is divided into two sections. In the
first section, a theory based on the Flory-Rehner rubber elasticity
is presented to predict the value of in-plane compressive stress
generated in a confined, elastic gel layer due to the absorption
of solvent. The theory explains the effect of the concentration
of elastically active cross-links (chemical or physical) and the
affinity of the solvent for the gel on the equilibrium solvent
content and the generated in-plane compressive stress. In the
second section, stability analysis of such a swelled, compressed,
elastic gel layer attached to either a viscous or an elastic bottom
layer atop a rigid substrate is considered. This section identifies
the critical conditions for wrinkling and predicts the wavelength
and amplitude of the wrinkles formed. If the bottom layer is
viscous, the compressed top layer is always unstable, and
wrinkling is a kinetic process. The viscous flow of the bottom
layer controls the kinetics, and selects the fastest growing
wavelength.37 If the bottom layer is elastic, there exists a critical
compressive stress, beyond which the top layer wrinkles. The
selected wrinkle wavelength is the one at which the total energy
of the top and the bottom layer is minimized.37 The goal of this
paper is to examine the effects of the modulus of the top and
bottom (when applicable) layer, the polymer solvent interaction
parameter, and the thickness ratio of the bottom to top layer on
the critical conditions of wrinkling, and the wrinkle wavelength
and amplitude for the cases of viscous and elastic bottom layers.

2. Generation of Compressive Stress in a Confined
Coating Layer by Solvent Absorption.

When exposed to a solvent, afreecross-linked gel layer swells
to its equilibrium, stress-free state by absorbing solvent. Such
a gel layer by virtue of being chemically cross-linked can absorb
solvent only up to an equilibrium concentration. When the gel
layer isconfinedto a rigid substrate, it can only swell freely in
the direction perpendicular to the substrate, but not in the direction
in-plane to the substrate. Therefore, swelling is frustrated in the
in-plane direction. This frustrated in-plane swelling creates in-
plane compressive stresses in the coating.38

The in-plane compressive stress generated by frustrated
swelling opposes solvent absorption and reduces the equilibrium
solvent concentration in thecross-linkedgel layer.Theequilibrium
solvent concentration depends on the swellability of the gel layer
(which falls with rising concentration of cross-links) and the
affinity of the solvent for the gel. The in-plane compressive
stress depends on the modulus of the gel layer that is proportional

to the concentration of cross-links and the in-plane strain that
depends on equilibrium solvent content. The modulus of the gel
layer apart from being proportional to the concentration of cross-
links also depends on equilibrium solvent concentration. To
predict the equilibrium solvent concentration and the in-plane
compressive stress generated, and to examine their dependence
on the concentration of cross-links and the affinity of the solvent
for the gel, a free-energy-based model of the swelling process
is constructed.

Swelling of a confined gel layer is shown as a combination
of two hypothetical steps in Figure 1. Linear strains in each
coordinate direction (λx,λy, andλz) for each step are also indicated
in the Figure. In the first step, the dry gel layer, which is attached
to the substrate (state A) is detached and allowed to swell freely
and isotropically to its equilibrium, completely relaxed, stress-
free state (state B).42 In the second step, the stress-free, swelled
layer is elastically compressed in-plane to its original in-plane
dimension and reattached to the substrate (state C). Thus, the
overall swelling process (state A to state C) is frustrated in the
in-plane direction and this frustrated swelling generates in-plane
compressive stress. The overall swelling process (A to C) can
be represented by the deformation gradient tensor,F.

where the lowercasezdenotes the out-of-plane coordinate after
swelling, and the uppercaseZ denotes the same before swelling.
As explained before, this overall deformation is composed of
two steps: isotropic swelling to the stress-free state (Fiso) followed
by in-plane elastic compression to the original in-plane dimension
(Fe).

The deformation gradient tensor for the isotropic swelling can
be written as

whereRS is the linear expansion (λx ) λy ) λz ) Rs) of the
isotropically swelled gel. The determinant ofFiso gives the ratio
of the volume of gel after and before swelling. Further, if the
gel is considered incompressible, this ratio is also related to the
ratio of the gel volume fraction (φ2) before and after swelling.
In the remainder of this article, solvent is denoted by subscript
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Figure 1. Schematic representation of the steps involved in the
swelling of a confined gel layer. Herex and y are the in-plane
coordinates, andz is the out-of-plane coordinate.

F T [1 0 0
0 1 0

0 0
∂z
∂Z

] (1)

F ) Fiso‚Fe (2)

Fiso ) RSI (3)
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1, and gel is denoted by subscript 2. The dry gel layer in state
A does not contain any solvent (φ2

A ) 1), and, once swelled, the
equilibrium polymer volume fraction does not change during the
elastic in-plane compression step (φ2

B ) φ2
C ) φ2,e, whereφ2,e is

the equilibrium gel volume fraction of the constrained gel layer).

The equilibrium solvent content in the gel layer can be predicted
by using the fact that, at equilibrium, the chemical potential of
the solvent inside and outside the gel is equal. The chemical
potential of the solvent can be estimated from the Gibbs free
energy (∆G) of the confined gel-solvent system. The Gibbs
free energy has two parts: one due to the mixing of solvent and
polymer gel (∆Gm), and the other due to the elastic deformation
of the swelling gel (∆Gel).43

The former part can be estimated by the Flory-Huggins mixing
free energy, with no contribution to the entropy of mixing from
the immobile gel.44

whereø represents the interaction energies between the solvent
and the cross-linked gel, andn1 represents the number of moles
of the solvent. The elastic part of the free energy is assumed to
be purely entropic. It can be estimated from a modified rubber
elasticity theory44

whereνe is the number of elastically effective cross-links.
The difference in the chemical potential of the solvent inside

the swollen network (µ1) and that of the surrounding pure solvent
(µ1

0) is given by

At equilibrium, the chemical potential of the solvent inside and
outside the gel is equal. Equations 3-8 can be used to estimate
the chemical potential difference of the solvent inside and outside
of a free gel layer (state A to B) at equilibrium:

whereNav is Avogadro’s number, andV̂1 is the molar volume
of the solvent. The factorνe/VA is the moles of elastically effective
cross-links per unit volume of original gel (state A). Arguments
similar to those in eq 4 show that the determinant of the
deformation gradient tensorF of the original deformation (A to
C) can be expressed as

Equations 5-8 and 10 can be used to estimate the chemical
potential difference of the solvent inside and outside of aconfined
gel layer (state A to C) at equilibrium:

Equation 11 can be solved numerically to estimate the
equilibrium solvent concentration. This absorbed solvent in the
attached gel layer generates in-plane compressive stress. The
in-plane elastic compressive stress arises because of the in-plane
elastic compression of the swelled gel,Fe (state B to state C).

The determinant ofFe is related to the gel volume ratio after and
before deformation, and the swelled gel is considered incom-
pressible:

The elastic stress tensorσ (of state C) can be calculated with
the neo-Hookean constitutive equation. This constitutive equation
can be derived from the rubber-elasticity free energy45 eq 7:

whereBe ) Fe‚FeT is the left Cauchy-Green tensor, andp is the
unknown hydrostatic pressure, which can be predicted with the
boundary conditionσzz) 0 (no out of plane stress). The modulus
of the swelled gelGB (state B) is a function of the gel volume
fraction at equilibriumφ2,e and is linearly proportional46 to the
concentration of cross-linksνe/VA:

The factorφ2,e
1/3appears because the gel in state B is isotropically

swollen. With eqs 4 and 12-15 the in-plane stresses can be
expressed as

In-plane stress in the confined gel layer is a function of the
concentration of cross-links and the equilibrium gel volume
fraction. Since the modulus of the dry gel is proportional to the
concentration of cross-links (eq 15), it is used as the parameter
of choice in place of the concentration of cross-links in the
remainder of the article. Also, water is considered the solvent
in the remainder of the article, and its specific molar volume
(V̂1 ) 18 cc/gmol) is used in all the predictions.
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∆Gm ) RT[n1 ln φ1 + øn1φ2] (6)

∆Gel ) -kνe

2
[λx

2 + λy
2 + λz

2 - 3 - ln(λxλyλz)] (7)

µ1 - µ1
0 ) ∆µ1 ) (∂∆G

∂n1
)

T,p
(8)

∆µ1 )

RT[ln(1 - φ2,e) + φ2,e + øφ2,e
2 +

νeV̂1

VANav
(φ2,e

1/3 -
φ2,e

2 )] ) 0

(9)

detF ) ∂z
∂Z

)
VC

VA
)

φ2
A

φ2
C

) 1
φ2,e

(10)

∆µ1 )

RT[ln(1 - φ2,e) + φ2,e + øφ2,e
2 +

νeV̂1

VANav
( 1
φ2,e

-
φ2,e

2 )] ) 0

(11)

Fe ) 1
RS

F (12)

detFe ) 1

RS
3

∂z
∂Z

)
VC

VB
) 1 (13)

σe ) -pI + GBBe (14)

GB )
kTνe

φ2,e
1/3

VA
) GA

φ2,e
1/3 (15)

σxx ) σyy ) kT
νe

VA
(φ2,e - 1

φ2,e
) (16)
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Figure 2A plots the equilibrium solvent volume fraction in a
confined gel layer (predicted from eq 11) versus Young’s modulus
of the unswelled gel layer (Et

0) for various values ofø. The
equilibrium solvent volume fraction falls as the modulus of the
gel layer rises because the swellability of the gel falls with rising
modulus. The equilibrium solvent volume fraction rises asø
falls because better solvents have higher affinity for the gel. The
in-plane compressive strain, shown in Figure 2B, also falls as
the equilibrium solvent volume fraction falls with rising modulus
andø. In-plane compressive stress, as shown in Figure 3, peaks
with rising modulus and rises with fallingø. As the modulus
rises, in-plane compressive strain falls, but the modulus rises
causing the in-plane compressive stress, which is the product of
the two, to peak. In-plane compressive stress rises with falling
ø because better solvent raises the equilibrium solvent volume
fraction and in-plane compressive strain.

3. Wrinkling of the Top Layer of a Two-Layer
Coating

This section utilizes key results from existing literature on the
buckling analysis of a compressed elastic top layer atop a viscous
or elastic bottom layer to investigate the wrinkling of a swelled,
compressed, elastic gel layer bonded to a viscous or elastic bottom
layer. The effects of the physical properties of the gel layer,
namely, the modulus (degree of cross-linking), polymer solvent
interaction parameter, and thickness ratio of the bottom to top
layer on the critical conditions for buckling instability, wrinkle
wavelength, and amplitude for both these cases are examined.

3.1. Wrinkling of an Elastic Gel Top Layer Bonded to a
Viscous Bottom Layer.Several recent studies have examined
the buckling instability of an elastic layer in compression bonded
to a viscous underlayer.47-50 Sridhar et al.49 performed a linear
stability analysis of the elastic layer for small perturbations, but
they neglected the shear traction at the layer interface and the
in-plane displacements. Huang et al.47 showed that such
simplifications are incorrect when the thickness of the viscous
layer is small. Huang et al.48 also studied the buckling of the
same system by approximating the viscous flow by lubrication
theory and using nonlinear plate theory for the elastic film.
Lubrication approximation required the thickness of the viscous
layer to be small compared to the buckling wavelength, and
therefore their analysis is not valid when the thickness of the
viscous layer is large. Huang et al.47 carried out a linear stability
analysis of the same system using creeping flow in the viscous
layer and using linear plate theory for the elastic film. Their
analysis is valid for any thickness of the viscous layer and reduces
to results from other authors in the thin48 and thick49 viscous
layer limits.

A schematic representation of the buckling of an elastic layer
of thicknessh bonded to a viscous layer of thicknessH, which
in turn is bonded to a rigid substrate, is presented in Figure 4.
The elastic layer is under in-plane biaxial compressive stressσ0.
The biaxial compressive stress is related to the biaxial strain by
σ0 ) Etε0/(1 - ν), whereEt is the modulus andν is the Poisson’s
ratio of the elastic layer. When the elastic top layer is a cross-
linked gel, its modulusEt ) Et

0
φ2,e

1/3 is a function of the
equilibrium gel volume fractionφ2,e. The governing equations
and major results of the linear stability analysis of the elastic
layer are presented by Huang et al.47According to their analysis,
for a given value of the compressive strain, the elastic layer is
unstable to perturbations of higher wavelength than a critical
wavelengthλc:

The critical wavelengthλc is nonimaginary only when the in-

(47) Huang, R.; Suo, Z.Int. J. Solids Struct.2002, 39, 1791.
(48) Huang, R.; Suo, Z.J. Appl. Phys.2002, 91, 1135.
(49) Sridhar, N.; Srolovitz, D. J.; Suo, Z.Appl. Phys. Lett.2001, 78, 2482.
(50) Sridhar, N.; Srolovitz, D. J.; Cox, B. N.Acta Mater.2002, 50, 2547.

Figure 2. (A) Equilibrium solvent volume fraction and (B) in-
plane compressive strain at equilibrium solvent content versus the
Young’s modulus of the gel layer for various values ofø.

Figure 3. In-plane compressive stress at equilibrium solvent content
versus Young’s modulus of the gel layer for various values ofø.

Figure 4. Schematic representation of the buckling of an elastic top
layer bonded to a viscous bottom layer atop a rigid substrate under
in-plane compression.

λc

h
) 2π

x-12ε0(1 + ν)
(17)
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plane strain is compressive (ε0 < 0). When the in-plane strain
is tensile (ε0 > 0) or the layer is strain-free (ε0 ) 0), then
perturbation decays and the layer is stable. When the in-plane
strain (or stress) is compressive, the critical wavelength is the
result of compromise between energy reduction associated with
the expansion of the layer and energy addition associated with
bending out of plane. For a given value of in-plane compressive
stress, whenλ < λc, the growth rate is negative, perturbation
decays, and the planar state is stable. Whenλ > λc, the growth
rate is positive, therefore perturbation grows exponentially, and
the planar state is unstable. Large (small) wavelength perturbations
grow (decay) since the energy reduction associated with expansion
of the layer is more (less) than the energy addition associated
with bending out of plane. This is shown graphically in Figure
5, where the dimensionless growth rate of perturbations (predicted
from eqs 11-13, 29-30, and 33-34 of Huang et al.47) in a
cross-linked elastic gel layer that has absorbed an equilibrium
amount of solvent is plotted against the wavelength for different
ratios of bottom layer to top layer thickness. The critical
wavelength for wrinkling is the same as that for a free-standing
layer subjected to in-plane compression. The viscous bottom
layer cannot exert any traction on the elastic top layer unless it
begins to flow. Therefore, the viscosity of the viscous layer or
its thickness does not have any effect on the critical condition
for instability. However, the viscosity and thickness of the bottom
layer determine the growth rate of unstable modes. Figure 5
shows that, for a given thickness ratio, the growth rate peaks as
wavelength rises. Shorter wavelength wrinkles decay because
the bending energy is too high compared to the energy of
expansion, and higher wavelength wrinkles grow slowly because
it takes a long time for the viscous material below to flow to
accommodate the long wavelength wrinkles; hence, the wrinkles
with intermediate wavelength grow fastest.

The evaluation of perturbation amplitude presented by Huang
et al.47 (eqs 31-32) is valid for small times only: once the
perturbation amplitude becomes large compared with the elastic
layer thickness, linear stability analysis no longer provides an
accurate description of the film profile evolution. In the long
time limit, for a fixed wavelength, there would be a thermo-
dynamic, equilibrium amplitude corresponding to a balance
between the release of the compressive stress in the layer and
the energy of bending the layer out of plane. Huang et al.48 found
the equilibrium amplitude for any perturbation wavelengthλ as
a function of critical wavelengthλc.

Forλ < λc, the equilibrium amplitude is nonexistent, and the flat
top layer is stable.

The wrinkle wavelength most likely to be observed at
equilibrium is the one growing fastest. The fastest growing
wavelengthλm, obtained from∂(growth rate)/∂λ ) 0, is plotted
in Figure 6, along with the critical wavelengthλc, against the
modulus of the top layer for various bottom to top layer thickness
ratiosH/h. As shown earlier in Figure 5, the critical wavelength
λc is independent ofH/h. Growth rates and equilibrium amplitudes
of the fastest growing perturbations for variousH/h ratios are
plotted in Figures 7 and 8, respectively. The fastest growing
wavelength rises and the equilibrium amplitude falls because the
bending stiffness of the elastic layer rises with its modulus. The
growth rate of the perturbations falls with rising elastic layer
modulus. Therefore, coatings with high elastic gel layer moduli

Figure 5. Growth rate of the linear perturbation versus wavelength
for various thickness ratios of a top layer with a Young’s modulus
of 2000 MPa. At equilibrium solvent content, such a layer would
experience an in-plane compressive strain,-ε0 ) 0.0475.

Figure 6. Fastest growing and critical wavelengths versus Young’s
modulus of the top layer for various thickness ratios. The critical
wavelength does not depend on thickness ratios.

Figure 7. Growth rate of the fastest growing wavelengths versus
Young’s modulus of the top layer for various thickness ratios.

Figure 8. Equilibrium amplitudes of the fastest growing wavelengths
versus Young’s modulus of the top layer for various thickness ratios.

A
h

) (13[( λ
λc

)2
- 1])1/2

(18)
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generate high-wavelength, low-amplitude wrinkles that grow
slowly; simply put, such coatings are least likely to wrinkle.

The fastest growing wavelength and the equilibrium amplitude
rise asH/h rises because the constraint of the rigid substrate to
the out-of-plane deformation of the elastic gel layer diminishes
with risingH/h. However, as the viscous layer becomes infinitely
thick, both the fastest growing wavelength and the equilibrium
amplitude saturate. The growth rate of the fastest growing
wavelengths also rises with risingH/h because the constraint of
the rigid substrate to the flow in the viscous layer diminishes
with rising H/h.

The fastest growing wavelengths and the corresponding
equilibrium amplitudes are plotted against the modulus of the
top layer for various values of the polymer solvent interaction
parameterø in Figures 9 and 10, respectively. The fastest growing
wavelength falls, and theequilibriumamplitude risesas theaffinity
of the solvent for the gel rises (ø falls) because better solvents
create higher compressive strain that promotes low-wavelength,
high-amplitude wrinkles.

3.2. Wrinkling of an Elastic Gel Top Layer Bonded to an
Elastic Bottom Layer. The buckling of a compressed elastic
layer bonded to another elastic layer has been analyzed by many
authors.16,24,25,28,37,51-54 Allen24 analyzed the buckling problem
by approximating the deformation of the top layer by Euler’s
linear plate theory, and the linear elasticity with the Hookean
constitutive equation for the bottom layer. However, he did not
consider the shear stress at the interface of the layers and neglected
the in-plane displacements. Groenewold52 analyzed the same

buckling problem by minimizing the bending and the compressive
energy of both the layers together with slightly different boundary
conditions than Allen, but obtained similar results.

A schematic representation of the buckling of an elastic top
layer of thicknessh bonded to another elastic bottom layer of
thicknessH, which in turn is bonded to a rigid substrate, is
presented in Figure 11. The top layer is biaxially compressed by
compressive stressσ0. The top and the bottom layers have moduli
Et andEb and Poisson’s ratiosνt andνb, respectively. Huang37

analyzed the buckling of the top layer by modeling the deformation
of the top layer by von Karman’s nonlinear plate theory. The
nonlinearity of von Karman’s plate theory allowed him to obtain
the equilibrium amplitude of the wrinkles as a function of the
in-plane compressive stress, wavenumber,Eb/Et, and H/h
(equation 3.2 of Huang et al.37):

whereλ is the wavelength of the wrinkles, andγ is a function
of the thickness and Poisson’s ratio of the bottom layer and the
wavenumber (equation A.14 of Huang et al.37):

Here,k ) 2π/λ is the wavenumber of the wrinkles.
When the top layer is a cross-linked elastic gel that has absorbed

an equilibrium amount of solvent, its modulusEt ) Et
0
φ2,e

1/3 is
a function of the equilibrium gel volume fractionφ2,e. The in-
plane stress generated,σ0, is also a function of the equilibrium
gel volume fraction and the concentration of elastically effective
cross-links, and can be predicted from equations 11 and 16.
Figure 12 shows the equilibrium wrinkle amplitude of a gel top
layer that has absorbed an equilibrium amount solvent as a
function of the wrinkle wavelength. Nonzero equilibrium
amplitude exists only for an intermediate wavelength window.
Outside the window equilibrium amplitude is zero, that is, the

(51) Chen, X.; Hutchinson, J. W.J. Appl. Mech.2004, 71, 597.
(52) Groenewold, J.Physica A2001, 298, 32.
(53) Chen, X.; Hutchinson, J. W.Scr. Mater.2004, 50, 797.
(54) Huang, Z.; Hong, W.; Suo, Z.Phys. ReV. E. 2004, 70, 030601.

Figure 9. Effect ofø on the fastest growing wavelength. The result
for a representative value ofH/h () 2) is shown.

Figure 10. Effect ofø on the amplitude corresponding to the fastest
growing wavelength. The result for a representative value ofH/h
() 2) is shown.

Figure 11. Schematic representation of the buckling of an elastic
top layer bonded to an elastic bottom layer atop a rigid substrate
under in-plane compression.

Figure 12. Equilibrium wrinkle amplitude versus wrinkle wave-
length.
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top layer does not wrinkle. The bending stiffness of the top layer
disfavors the low-wavelength wrinkles, and the constraint of the
bottom layer disfavors the high-wavelength wrinkles, allowing
the top layer to wrinkle only at some intermediate wavelength
window. It will be shown later that the window shrinks as the
top and bottom layer moduli and/orø rise, and/or the thickness
ratio H/h falls. Therefore, a critical condition exists where the
equilibrium amplitude is zero at all wavelengths and the flat top
layer is stable. The critical compressive stress can be predicted
by treating σ0 as an unknown and setting the maximum
equilibrium amplitude of eq 19 to zero.

Figure 13 shows the critical compressive stress as a function
of the top layer modulusEt for various values ofø and given
values ofEb andH/h. The critical compressive stress is a weak
function ofø: plots for various values ofø fall on top of each
other. The plot for the critical compressive stress divides the
plane into two regions: below the plot the top layer is stable,
and, above the plot, the top layer wrinkles. For a given top layer
modulus, the critical condition predicts the minimum compressive
stress required to wrinkle the top layer. For a given compressive
stress, the critical condition predicts the maximum value ofEt

for the top layer to wrinkle. The critical compressive stress of
the top layer rises withEt because the bending stiffness of the
top layer rises withEt.

Figure 13 also plots the compressive stresses generated in the
top layer that has absorbed an equilibrium amount of solvent for
various values ofø and given values ofEb andH/h. The top layer
will wrinkle only when the compressive stress generated is greater
than the critical stress for wrinkling. For every value ofø, there
exists a range of values ofEt for which the top layer would
generate enough compressive stress to wrinkle. Figure 14 shows
plots of wrinkling windows withEt andø as axes andEb as the
parameter. For a given value ofEb, the region below the curve
shows combinations ofEt andø that would produce wrinkles,
and the region above the curve shows combinations that would
not. As the value ofø rises, the equilibrium solvent content falls,
causing the generated stress to fall below the critical stress for
wrinkling. Further, the generated compressive stress peaks with
rising values ofEt, causing the coatings with an intermediate top
layer modulus and lowø to be the most prone to wrinkling. As
Eb rises, the wrinkling window shrinks because the constraint of
the bottom layer opposes the wrinkling of the top layer.

Figure 15 shows the critical compressive stress and the
compressive stresses generated in the top layer that have absorbed
an equilibrium amount of solvent as a function of the top layer
modulusEt for various values ofH/h and given values ofEb and
ø. For a given value ofEt, the critical stress for wrinkling falls

as H/h increases because thicker bottom layers provide less
constraint on wrinkling. However, the critical compressive stress
becomes insensitive to the values ofH/h asH/h f ∞ because
the presence of the rigid substrate no longer constrains wrinkling.
The compressive stress generated depends solely on the
concentration of elastically effective cross-links andø and
therefore does not change withH/h. Figure 16 shows plots of
wrinkling windows withEt andø as axes andH/has the parameter.
For a given value ofH/h, the region below the curve shows
combinations ofEt andø that would produce wrinkles, and the
region above the curve shows combinations that would not. As

Figure 13. Critical compressive stress for wrinkling and compressive
stress generated in the top layer at equilibrium solvent content versus
the ratio of top to bottom layer Young’s moduli for various values
of ø.

Figure 14. Wrinkling window with the top layer Young’s modulus
andø as axes and the bottom layer modulus as a parameter. For a
given bottom layer modulus, any combination of top layer modulus
andø that falls below the corresponding line would produce wrinkles.

Figure 15. Critical compressive stress for wrinkling and compressive
stress generated in the top layer at equilibrium solvent content versus
the ratio of top to bottom layer Young’s moduli for various values
of thickness ratioH/h.

Figure 16. Wrinkling window with the top layer Young’s modulus
andø as axes and the thickness ratioH/h as a parameter. For a given
value ofH/h, any combination of the top layer modulus andø that
falls below the corresponding line would produce wrinkles.

5922 Langmuir, Vol. 22, No. 13, 2006 Basu et al.



H/h falls, the wrinkling window shrinks because the proximity
of the rigid substrate opposes the wrinkling of the top layer.

The maximum equilibrium amplitude peaks and the corre-
sponding wavelength rises with the top layer modulus. Figure
17A shows the equilibrium amplitude of a gel top layer that has
absorbed an equilibrium amount of solvent as a function of wrinkle
wavelength for various values of top layer modulus and given
values ofEb, H/h, andø. The equilibrium solvent content, in-
plane compressive strain, and therefore the stored compressive
elastic strain energy that promotes wrinkling fall with rising top
layer modulus. However,Et/Eb rises, and therefore the constraint
of the bottom layer that opposes wrinkling falls with rising top
layer modulus. The interplay of these two opposing factors causes
the equilibrium amplitude to peak. The wavelength rises withEt

because the bending stiffness of the top layer rises withEt.
The maximum equilibrium amplitude and the corresponding

wavelength fall with rising bottom layer modulus and given
values ofEt, H/h andø (Figure 17B). AsEb rises, the bottom
layer disfavors out-of-plane deformation, and equilibrium
amplitude falls. Also, as Eb rises, the constraint of the bottom
layer rises, which disfavors long wavelength wrinkles.

The maximum equilibrium amplitude falls and the corre-
sponding wavelength falls insignificantly with the falling affinity
of the solvent for the gel (higherø) and given values ofEt, Eb,
andH/h (Figure 17C). As the affinity of the solvent for the gel
falls, the equilibrium solvent content, in-plane compressive strain,
and therefore the stored compressive elastic strain energy that
drives wrinkling fall, causing the equilibrium amplitude to fall.

The maximum equilibrium amplitude and the corresponding
wavelength rise with the rising bottom layer to top layer thickness
ratioH/h and given values ofEt, Eb, andø (Figure 17D). AsH/h
rises, the constraint of the bottom layer that disfavors wrinkling
falls, causing the wrinkle amplitude and wavelength to rise.

However, the effect ofH/hon wrinkle amplitude and wavelength
diminishes asH/hf ∞ because the presence of the rigid substrate
no longer constrains wrinkling.

4. Conclusions

An in-plane constrained cross-linked gel layer absorbs an
equilibrium amount of solvent and experiences in-plane com-
pressive stress. The equilibrium solvent content can be predicted
by setting the chemical potential difference of the solvent inside
and outside the gel equal to zero. The equilibrium solvent content
is a function of the concentration of cross-links and the polymer
solvent interaction parameterø. The in-plane compressive stress
can be predicted from a rubber elasticity constitutive equation
and is also a function of the concentration of cross-links and the
polymer solvent interaction parameterø. The equilibrium solvent
content and in-plane compressive strain fall with rising con-
centration of cross-links and falling affinity of the solvent for
the gel. However, the in-plane compressive stress peaks with
rising concentration of cross-links because swellability and in-
plane compressive strain fall and modulus rise with rising
concentration of cross-links. The in-plane compressive stress
falls with falling affinity of the solvent for the gel.

Stability analysis of a cross-linked elastic gel that has absorbed
an equilibrium amount of solvent and attached to either a viscous
or elastic bottom layer can be used to examine the effect of the
top and bottom layer modulus, the thickness ratio of the layers,
and the polymer solvent interaction parameter on the critical
conditions of wrinkling, and the wrinkle wavelength and
amplitude. When the bottom layer is viscous, the compressed
top layer is always unstable, and wrinkling is a kinetic process.
The viscous flow of the bottom layer controls the kinetics and
selects the fastest growing wavelength that is most likely to be

Figure 17. Equilibrium wrinkle amplitude versus wrinkle wavelength for various values of (A) the top layer modulus, (B) the bottom layer
modulus, (C)ø, and (D) the thickness ratioH/h.
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observed at equilibrium. As the elastic gel layer modulus rises,
the fastestgrowingwavelength risesand theequilibriumamplitude
falls because the bending stiffness of the elastic layer rises with
its modulus. As the thickness ratioH/h rises, the fastest growing
wavelength and the equilibrium amplitude rise because the
constraint of the rigid substrate to the out-of-plane deformation
of the elastic gel layer diminishes with risingH/h. Asø falls, the
fastest growing wavelength falls and the equilibrium amplitude
rises because better solvents create higher compressive strain
that promotes low-wavelength, high-amplitude wrinkles.

When the bottom layer is elastic, there exists a critical
compressive stress. If the generated compressive stress is greater
than the critical stress, the top layer wrinkles. As the top layer
modulus rises, the critical compressive stress rises, and the
compressive stress generated peaks at an intermediate value,
causing coatings with top layers of intermediate modulus to most
likely wrinkle. Wrinkle amplitude peaks because the generated
stress peaks, and wrinkle wavelength rises because bending
stiffness rises with rising top layer modulus. As the bottom layer
modulus rises, the critical compressive stress rises, but the

compressive stress generated does not change, so that coatings
with a low bottom layer modulus are most likely to wrinkle.
Wrinkle amplitude and wavelength fall because the constraint
of the bottom layer rises with rising bottom layer modulus. As
the thickness ratioH/h rises, the critical compressive stress falls,
but the compressive stress generated does not change, so that
coatings with highH/h are most likely to wrinkle. Wrinkle
amplitude and wavelength rise because the proximity to the rigid
substrate that opposes wrinkling falls with risingH/h. Asø falls,
the critical compressive stress does not change, but the compres-
sive stress generated rises; thus, coatings absorbing solvents with
low ø are most likely to wrinkle. Wrinkle amplitude rises because
better solvent generates higher compressive strain energy, which
promotes wrinkling, and wavelength does not change significantly
with falling ø.
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