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An in-plane constrained cross-linked gel layer absorbs an equilibrium amount of solvent and experiences in-plane
compressive stress. A stability analysis of such an elastic gel layer that is attached to either a viscous or an elastic
bottom layer atop a rigid substrate is considered. The effects of the top and bottom layer repdoll Ey), the
bottom-to-top layer thickness ratibl(h), and the polymer solvent interaction paramej@ron the critical condition
of wrinkling, wrinkle wavelength, and amplitude are examined. When the bottom layer is viscous, the compressed
top layer is always unstable, and wrinkling is rate-controlled. The viscous flow of the bottom layer governs the rate
and determines the fastest growing wavelengthEAsses, the bending stiffness of the elastic layer does as well,
and so the fastest growing wavelength)rises and the equilibrium amplitudad falls. AsH/hrises, the constraint
of the rigid substrate diminishes, andspandA. rise. Asy falls or as the solvent has higher affinity for the polymeric
gel, A falls and A, rises because better solvents create higher compressive strain that promote low-wavelength,
high-amplitude wrinkles. When the bottom layer is elastic, a critical compressive stress exists. If the generated
compressive stress by solvent absorption is greater than the critical stress, the top layer wrinkles. It was found that
wrinkling is most likely at intermediatg;, low Eyp, high H/h, and lowy. Further, lowetry, higherH/h, and lowerk,
were found to promote higher equilibrium amplitude and higher wavelength wrinkles.

blisters'®-23 Second, one or more layers can buckle without
loosening the adhesion to the adjacent layer(s). The adjacent
layer(s) deform(s) to accommodate the out-of-plane deformations
of the buckled layer(s¥28 All the examples of solidifying
golymeric coatings examin&é& were found to wrinkle by the
Second process, wherein the top layer buckled and the bottom
layer conformed to the buckled shape.

The top layer can be put into compression by at least two
distinct processes: first, by changing the temperature of the
coating, provided that the different layers have different thermal
expansivities and, second, by absorbing solvents in the top layer.
Compressive stress generation and wrinkling by changing the

1. Introduction

A solidified polymeric coating with two layers atop a rigid
substrate can wrinkle if the top layer is put into high enough
in-plane compressive stress. Under high enough in-plane
compressive stress, the planar shape of the top layer become
unstable with respect to buckling, and it deforms out of plane
to produce wrinkles. The bottom layer can be either visEus
or elasti¢~® at the time of wrinkle formation. Therefore, as a
two-layer polymeric coating solidifies, predicting the in-plane
stress generated in the top layer is critical for predicting whether
the top layer would wrinkle.

Many authors have analyzed stress generation in different
layers of a multilayer system subjected to isotré8iand (10) “Tension field theory” accounts for wrinkling in thin free-standing layers
anisotropié in-plane forces. During drying, curing, and subse- under in-plane tension by assuming negligible flexural stiffness of the layer. The
quent processing, different layers i a multlayer coating can 1720 SOUEs DXt fr e aer, T1he S of stese 1 e plane of e e
generate either in-plane tensile or compressive stress. Wrinklingcompressive, the layer would wrinkle with wrinkles oriented in the direction of
under tension is explained by the so-called “tension field theBry”.  thetensile principal stre$s-15 A scaling analysis of the wavelength and amplitude
This paper examines the wrinkling of two-layer coatings atop S,{evgfﬂ'j"i‘ge;,g;‘;iﬁggdb;'E‘;gg“g’t'l%’l‘f’ tension that complement the tension field
a rigid substrate under compression by buckling instabflity. (11) Reissner, EProc. 5th Int. Congr. Appl. MectL939 88.

Generally, a multilayer coating under compression can buckle E% m';ff'gdKEHizg’e%e?h%‘f\f?ﬁﬁ%’;ﬁ;?f?35254;5 Kahyai, S.
by two distinct processes. First, one or more layers can buckle comput. Struct1985 20, 631.

out of plane and delaminate from the adjacent layer(s) to produce  (14) Pipkin, A. C.Arch. Ration. Mech. Anatl986 95, 93.
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temperature of a two-layer coating with different thermal

expansivity layers have been dealt with in detail in the |

literature?~6:30-36 This paper therefore examines the wrinkling ~ Elastic isotropic swelling of Elastic in-plane
the stress-free-state, F*" compression, F*

of the top layer when it generates in-plane compressive stress
by absorbing solvents. It is further assumed that only the top oo
1 1 | —
layer wrinkled and the bottom layer conformed to the wrinkled N
®'><\><%( e
d= 1

¥ 4

A= ly = 2'1 =0 lx = l\( = l/ot,, lz T (.'»(:i2
i

shape upon wrinkling. The top layer is assumed to be a cross- W

linked elastic gel, and the bottom layer is assumed to be either

elastic or viscous. Figure 1. Schematic representation of the steps involved in the
The remainder of the paper is divided into two sections. In the swelling of a confined gel layer. Hereandy are the in-plane
first section, atheory based on the Flefgehner rubber elasticity ~ coordinates, and is the out-of-plane coordinate.

is presented to predict the value of in-plane compressive stress

generated in a confined, elastic gel layer due to the absorptiongoe”;ggg%egtﬁ}lt;gnu?; gg?\?::{nclésn?enni t_pﬁ;;g?&i:gﬁaethztl
of solvent. The theory explains the effect of the concentration p q : 9

of elastically active cross-links (chemical or physical) and the :ﬁ]fsr 2?;“ggrggglsn%Er?ﬁﬁ;gﬁﬁ:ﬁc’;gﬁéﬂ?i%nﬁgitéﬁpazgﬂoii
affinity of the solvent for the gel on the equilibrium solvent P q X

content and the generated in-plane compressive stress. In th@redict th? equilibrium solvent concentratiop and t_he in-plane
second section, stability analysis of such a swelled, compressedCompress've stress generated, and to examine their dependence

elastic gel layer attached to either a viscous or an elastic bottom?n tTle conlcenftratlon of crogs-hn(l;s an dd 'ihefa;‘]fmlty Orthe solvent
layer atop a rigid substrate is considered. This section identifies.Ort e gel, a free-energy-based model of the swelling process
the critical conditions for wrinkling and predicts the wavelength IS const_ructed. ) . L
and amplitude of the wrinkles formed. If the bottom layer is Swelling of a _conflned ggl Iayer IS ShO.W” asa cpmplnatlon
viscous, the compressed top layer is always unstable, andOf two hypo_thet|_ca| steps in Figure 1. Linear strains in each
wrinkling is a kinetic process. The viscous flow of the bottom _coordlnated|rect|orﬁ§(, Ay, and,) for each step are a_lso_lndlcated
layer controls the kinetics, and selects the fastest growing in the Figure. In the first step, the dry gel layer, which is attached

wavelength®’ If the bottom layer is elastic, there exists a critical to the substrate (state A) is detached and allowed to swell freely

compressive stress, beyond which the top layer wrinkles. The and isotropically to its equilibrium, completely relaxed, stress-
selected wrinkle wavelength is the one at which the total energy free state (St"."te BY.In the secongl step, the stress_-f_ree,_swelled
of the top and the bottom layer is minimiz&The goal of this quer |s.elast|cally compressed in-plane to its original in-plane
paper is to examine the effects of the modulus of the top and dimension and reattached to the substrate (state Q). Thys, the
bottom (when applicable) layer, the polymer solvent interaction _overall sw_elllng process (state A to state_C) IS frustrate_d in the
parameter, and the thickness ratio of the bottom to top layer on in-plane d|_rect|on and this frustrated svyellmg generates in-plane
the critical conditions of wrinkling, and the wrinkle wavelength compressive stress. The overall swelling process (A to C) can

and amplitude for the cases of viscous and elastic bottom Iayers.be represented by the deformation gradient terfsor,

eformation, F
Y Is Ap = U

2. Generation of Compressive Stress in a Confined é (1) 8
Coating Layer by Solvent Absorption. F~ 57 (1)
When exposed to a solventraecross-linked gel layer swells 00 9Z

to its equilibrium, stress-free state by absorbing solvent. Such

agel layer by virtue of being chemically cross-linked can absorb Where the lowercasedenotes the out-of-plane coordinate after

solvent only up to an equilibrium concentration. When the gel swelling, and the uppercaZedenotes the same before swelling.

layer isconfinedto a rigid substrate, it can only swell freely in ~As explained before, this overall deformation is composed of

the direction perpendicular to the substrate, but notin the direction two steps: isotropic swelling to the stress-free st&ft€)followed

in-plane to the substrate. Therefore, swelling is frustrated in the by in-plane elastic compression to the original in-plane dimension

in-plane direction. This frustrated in-plane swelling creates in- (F®).

plane compressive stresses in the coatng.  iso e
The in-plane compressive stress generated by frustrated F=F"F ()

swelling opposes §o|yent absorpti.on andreduces the equ.illib.rium-l-he deformation gradient tensor for the isotropic swelling can

solventconcentrationinthe cross-linked gellayer. The equilibrium o\ vitten as

solvent concentration depends on the swellability of the gel layer

(which falls with rising concentration of cross-links) and the Fiso — ol 3)

affinity of the solvent for the gel. The in-plane compressive

stress depends on the modulus of the gel layer thatis proportionalyhere os is the linear expansiom{ = Ay = A; = ay) of the

. isotropically swelled gel. The determinantféf° gives the ratio

w0 Huck, W T- ian?t?i\;vgggd N Qnek P.; Pardoen, T.; Hutchinson, J. W.i-_ of the volume of gel after and before swelling. Further, if the
(31) Lacbpi, F.; Brongersma, S. H.: Maex,&ppl. Phys. Let2003 82, 1380. gel is considered incompressible, this ratio is also related to the
(32) Yoo, P.J.; Suh, K. Y.; Park, S.Y.; Lee, H. Adv. Mater.2002 14, 1383. ratio of the gel volume fractiongg) before and after swelling.
(33) Yoo, P. J., Park, S. Y.; Kwon, S. J.; Suh, K-Y.; Lee, HA#pl. Phys. In the remainder of this article, solvent is denoted by subscript

Lett. 2003 83, 4444.
(34) Kim, J.; Lee, H. HJ. Polym. Sci., Part B: Polym. Phy2001, 39, 1122.

(35) Zhang, H. L.; Okayasu, T.; Bucknall, D. Bur. Polym. J2004 40, 981. (39) Tanaka, T.; Sun, S. T.; Hirokawa, Y.; Katayama, S.; Kucera, J.; Hirose,
(36) Chua, D. B. H.; Ng, H. T.; Li, S. F. YAppl. Phys. Lett200Q 76, 721. Y.; Amiya, T. Nature 1987, 325, 796.
(37) Huang, RJ. Mech. Phys. Solid8005 53, 63. (40) Teschke, O.; Kleinke, M. U.; Galembeck, F.Appl. Polym. Sci1995
(38) When a single gel layer is attached to a rigid substrate, high enough 57, 1567.
in-plane compressive stress can buckle it out of plane to produce wriiikles. (41) Sharp, J. S.; Jones, R. A. Adv. Mater. 2002 14, 799.

However, most often, such out-of-plane deformations cause delamination from  (42) Lei, H.; Francis, L. F.; Gerberich, W. W.; Scriven, L.AChE J.2002
the substrate and create blistét4! 48, 437.
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1, and gel is denoted by subscript 2. The dry gel layer in state 9z Ve ¢/2\ 1
A does not contain any solvenﬁg( = 1), and, once swelled, the detF = 3z VAR (10)
equilibrium polymer volume fraction does not change during the A ¢ P2e

elastic in-plane compression stef} (= ¢5 = ¢z, Wherep, cis

the equilibrium gel volume fraction of the constrained gel layer). ~ Equations 5-8 and 10 can be used to estimate the chemical

potential difference of the solventinside and outsideatfiained

A gel layer (state A to C) at equilibrium:
detF*=al=ve=f2_ 1 @
s VA ¢g ¢2,e A/"l =

v ¢

The equilibrium solvent content in the gel layer can be predicted RT['”(l — 29 T bret APre + v Nl (¢i - %e)] =0
by using the fact that, at equilibrium, the chemical potential of ATav\2e 1
the solvent inside and outside the gel is equal. The chemical (11)
potential of the solvent can be estimated from the Gibbs free Equation 11 can be solved numerically to estimate the
energy (\G) of the confined getsolvent system. The Gibbs  ¢qyilibrium solvent concentration. This absorbed solvent in the
free energy has two parts: one due to the mixing of solvent and gitached gel layer generates in-plane compressive stress. The
polymer gel AGr), and the other due to the elastic deformation i pjane elastic compressive stress arises because of the in-plane

of the swelling gel £Ge).** elastic compression of the swelled gét, (state B to state C).
AG=AG_, + AG 5
m el ( ) Fe= aiF (12)
S

The former part can be estimated by the FlteHuggins mixing
free energy, with no contribution to the entropy of mixing from  The determinant df¢is related to the gel volume ratio after and

the immobile geft* before deformation, and the swelled gel is considered incom-
pressible:
AG, =RTny In ¢; + xn¢,] (6) v
_ _ ) de“:e:igz_cz (13)
wherey represents the interaction energies between the solvent (133 3Z Vg

and the cross-linked gel, amg represents the number of moles
of the solvent. The elastic part of the free energy is assumed t0 e elastic stress tensan(of state C) can be calculated with

be purely entropic. It can be estimated from a modified rubber (he neo-Hookean constitutive equation. This constitutive equation
elasticity theory* can be derived from the rubber-elasticity free enérgy 7:

—kv® e_ _ Bpe
AGy=—5[h7+ 47+ =3 In@A0)]  (7) o =-pl+GB (14)
whereBe = Fe-F¢ is the left Cauchy Green tensor, anglis the
wherev® is the number of elastically effective cross-links. unknown hydrostatic pressure, which can be predicted with the

The difference in the chemical potential of the solvent inside boundary conditiow,,= 0 (no out of plane stress). The modulus
the swollen networks(;) and that of the surrounding pure solvent  of the swelled geG® (state B) is a function of the gel volume
(/12) is given by fraction at equilibriumgp, e and is linearly proportiondf to the

concentration of cross-linke¥/Va:

IAG
Ml—ui’=Au1=( )
T,p

8) KTvo. 13
n Ve
8 1 GB — V 2.e — GA¢2yel/3 (15)
A
At equilibrium, the chemical potential of the solvent inside and
outside the gel is equal. Equations&can be used to estimate  The factorp, &/®appears because the gelin state B is isotropically

the chemical potential difference of the solventinside and outside swollen. With eqs 4 and 1215 the in-plane stresses can be

of afree gel layer (state A to B) at equilibrium: expressed as
Au, = e
o R Oy = 0y = KT—- Do~ 1 (16)
2, "W 1z D2e Y Val'™® &,
RTIN(L = ¢,9 + ¢ret 20 + V.N b~ 7 =0
Aav In-plane stress in the confined gel layer is a function of the
9) concentration of cross-links and the equilibrium gel volume

. , . fraction. Since the modulus of the dry gel is proportional to the
whereNay is Avogadro’s number, antl; is the molar volume  ¢oncentration of cross-links (eq 15), it is used as the parameter
ofthe s_olvent. The_factmeNA |sth(_a moles of elastically effective 4 choice in place of the concentration of cross-links in the
cross-links per unit volume of original gel (state A). Arguments  remainder of the article. Also, water is considered the solvent

similar to those in eq 4 show that the determinant of the iy the remainder of the article, and its specific molar volume
deformation gradient tensérof the original deformation (Ato  (\; = 18 cc/gmol) is used in all the predictions.

C) can be expressed as

(45) Basar, Y.; Weichert, DNonlinear Continuum Mechanics of Solids
(43) Flory, P. J.; Rehner, J. Chem. Phys1943 11, 512. Springer: Berlin, 2000.
(44) Flory, P. JPrinciples of Polymer Chemistryornell University Press: (46) Hiemenz, P. C.; Lodge, T. PRolymer Chemistry University of
Ithaca, NY, 1953. Minnesota: Minneapolis, MN, 2004.
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Figure 2. (A) Equilibrium solvent volume fraction and (B) in-
plane compressive strain at equilibrium solvent content versus the
Young's modulus of the gel layer for various valuesyof

o
o

v=03

0

40

30

20

10

In-plane compressive stress - ¢ , MPa

0 10

150 7000

Top modulus E:D' MPa

Figure 3. In-plane compressive stress at equilibrium solvent content
versus Young’s modulus of the gel layer for various valueg.of

Figure 2A plots the equilibrium solvent volume fraction in a
confined gellayer (predicted from eq 11) versus Young’s modulus
of the unswelled gel IayerEf’) for various values of;. The
equilibrium solvent volume fraction falls as the modulus of the
gel layer rises because the swellability of the gel falls with rising
modulus. The equilibrium solvent volume fraction risesyas
falls because better solvents have higher affinity for the gel. The
in-plane compressive strain, shown in Figure 2B, also falls as
the equilibrium solvent volume fraction falls with rising modulus

andy. In-plane compressive stress, as shown in Figure 3, peaks

with rising modulus and rises with falling. As the modulus

Langmuir, Vol. 22, No. 13, 269869

=2n/k

Elastic layer, E, v puuuisfi

Viscous layer,

Rigid substrate

Figure 4. Schematic representation of the buckling of an elastic top
layer bonded to a viscous bottom layer atop a rigid substrate under
in-plane compression.

3. Wrinkling of the Top Layer of a Two-Layer
Coating

This section utilizes key results from existing literature on the
buckling analysis of a compressed elastic top layer atop a viscous
or elastic bottom layer to investigate the wrinkling of a swelled,
compressed, elastic gel layer bonded to a viscous or elastic bottom
layer. The effects of the physical properties of the gel layer,
namely, the modulus (degree of cross-linking), polymer solvent
interaction parameter, and thickness ratio of the bottom to top
layer on the critical conditions for buckling instability, wrinkle
wavelength, and amplitude for both these cases are examined.

3.1. Wrinkling of an Elastic Gel Top Layer Bonded to a
Viscous Bottom Layer. Several recent studies have examined
the buckling instability of an elastic layer in compression bonded
to a viscous underlayéf-50 Sridhar et af® performed a linear
stability analysis of the elastic layer for small perturbations, but
they neglected the shear traction at the layer interface and the
in-plane displacements. Huang et“&lshowed that such
simplifications are incorrect when the thickness of the viscous
layer is small. Huang et &P also studied the buckling of the
same system by approximating the viscous flow by lubrication
theory and using nonlinear plate theory for the elastic film.
Lubrication approximation required the thickness of the viscous
layer to be small compared to the buckling wavelength, and
therefore their analysis is not valid when the thickness of the
viscous layer is large. Huang et“dlcarried out a linear stability
analysis of the same system using creeping flow in the viscous
layer and using linear plate theory for the elastic film. Their
analysisis valid for any thickness of the viscous layer and reduces
to results from other authors in the thfrand thick® viscous
layer limits.

A schematic representation of the buckling of an elastic layer
of thicknessh bonded to a viscous layer of thickngdswhich
in turn is bonded to a rigid substrate, is presented in Figure 4.
The elastic layer is under in-plane biaxial compressive strigss
The biaxial compressive stress is related to the biaxial strain by
0o = Eweo/(1 — v), whereE; is the modulus andis the Poisson’s
ratio of the elastic layer. When the elastic top layer is a cross-
linked gel, its modulusE, = E’¢, 43 is a function of the
equilibrium gel volume fractiog, e The governing equations
and major results of the linear stability analysis of the elastic
layer are presented by Huang et&According to their analysis,
for a given value of the compressive strain, the elastic layer is
unstable to perturbations of higher wavelength than a critical
wavelengthdc:

2n

V=121 +v)

A B
n (17)

rises, in-plane compressive strain falls, but the modulus risesThe critical wavelengtii. is nonimaginary only when the in-

causing the in-plane compressive stress, which is the product of

the two, to peak. In-plane compressive stress rises with falling
x because better solvent raises the equilibrium solvent volume
fraction and in-plane compressive strain.

(47) Huang, R.; Suo, Znt. J. Solids Struct2002 39, 1791.

(48) Huang, R.; Suo, ZJ. Appl. Phys2002 91, 1135.

(49) Sridhar, N.; Srolovitz, D. J.; Suo, Appl. Phys. Lett2001, 78, 2482.
(50) Sridhar, N.; Srolovitz, D. J.; Cox, B. Mcta Mater.2002 50, 2547.
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Figure 5. Growth rate of the linear perturbation versus wavelength Top modulus E ', MPa

for various thickness ratios of a top layer with a Young's modulus  Figure 6. Fastest growing and critical wavelengths versus Young's
of 2000 MPa. At equilibrium solvent content, such a layer would modulus of the top layer for various thickness ratios. The critical

experience an in-plane compressive straiag = 0.0475. wavelength does not depend on thickness ratios.
plane strain is compressivey(< 0). When the in-plane strain 0.8 LA A B A
is tensile €, > 0) or the layer is strain-freec{ = 0), then 0.7 E v=03,1=04
perturbation decays and the layer is stable. When the in-plane = . ;¢

strain (or stress) is compressive, the critical wavelength is the =

result of compromise between energy reduction associated with @~ 0.5

the expansion of the layer and energy addition associated with § 0.4

bending out of plane. For a given value of in-plane compressive £ 0.3

stress, wherd < A, the growth rate is negative, perturbation E

decays, and the planar state is stable. When/., the growth & 02

rate is positive, therefore perturbation grows exponentially, and 0.1

the planar state is unstable. Large (small) wavelength perturbations 0 .

grow (decay) since the energy reduction associated with expansion 10 100 1000
of the layer is more (less) than the energy addition associated Top modulus E‘°, MPa

with bending out of plane. This is shown graphically in Figure riqyre 7. Growth rate of the fastest growing wavelengths versus
5, where the dimensionless growth rate of perturbations (predictedyoung’s modulus of the top layer for various thickness ratios.

from egs 1+13, 29-30, and 33-34 of Huang et at’) in a

cross-linked elastic gel layer that has absorbed an equilibrium 0.8 [ ' T 20
amount of solvent is plotted against the wavelength for different 075 F
ratios of bottom layer to top layer thickness. The critical s
AR ! £ 07
wavelength for wrinkling is the same as that for a free-standing < g
layer subjected to in-plane compression. The viscous bottom § 063k
layer cannot exert any traction on the elastic top layer unlessit = 0.6
begins to flow. Therefore, the viscosity of the viscous layeror £ 355
. . - L. < P F
its thickness does not have any effect on the critical condition 0s b HIh = ]
forinstability. However, the viscosity and thickness of the bottom B :
layer determine the growth rate of unstable modes. Figure 5 0.45 | Corresponding to fastest
. . . [ growing wavelength
shows that, for a given thickness ratio, the growth rate peaks as 04 L T s 550

wavelength rises. Shorter wavelength wrinkles decay because
the bending energy is too high compared to the energy of
expansion, and higher wavelength wrinkles grow slowly because Figure 8. Equilibrium amplitudes of the fastest growing wavelengths
it takes a long time for the viscous material below to flow to versus Young's modulus of the top layer for various thickness ratios.
accommodate the long wavelength wrinkles; hence, the wrinkles

Top modulus Et°, MPa

with intermediate wavelength grow fastest. Fori < A, the equilibrium amplitude is nonexistent, and the flat
The evaluation of perturbation amplitude presented by Huang top layer is stable.
et al*” (eqs 31-32) is valid for small times only: once the The wrinkle wavelength most likely to be observed at

perturbation amplitude becomes large compared with the elasticequilibrium is the one growing fastest. The fastest growing
layer thickness, linear stability analysis no longer provides an wavelengthi,, obtained frond(growth rate)dA = 0, is plotted
accurate description of the film profile evolution. In the long in Figure 6, along with the critical wavelengfh, against the
time limit, for a fixed wavelength, there would be a thermo- modulus of the top layer for various bottom to top layer thickness
dynamic, equilibrium amplitude corresponding to a balance ratiosH/h. As shown earlier in Figure 5, the critical wavelength
between the release of the compressive stress in the layer ang,_js independent dfi/h. Growth rates and equilibrium amplitudes
the energy of bending the layer out of plane. Huang €tfalund of the fastest growing perturbations for varidd# ratios are
the equilibrium amplitude for any perturbation waveleng#s  potted in Figures 7 and 8, respectively. The fastest growing
a function of critical wavelengtfic. wavelength rises and the equilibrium amplitude falls because the
bending stiffness of the elastic layer rises with its modulus. The
A_ (1[(&)2 — ])1/2 (18) growth rate of the perturbations falls with rising elastic layer

h 3 \Ac modulus. Therefore, coatings with high elastic gel layer moduli
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generate high-wavelength, low-amplitude wrinkles that grow
slowly; simply put, such coatings are least likely to wrinkle.
The fastest growing wavelength and the equilibrium amplitude
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Figure 11. Schematic representation of the buckling of an elastic
top layer bonded to an elastic bottom layer atop a rigid substrate
under in-plane compression.
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Figure 12. Equilibrium wrinkle amplitude versus wrinkle wave-
length.

buckling problem by minimizing the bending and the compressive
energy of both the layers together with slightly different boundary
conditions than Allen, but obtained similar results.

A schematic representation of the buckling of an elastic top
layer of thickness bonded to another elastic bottom layer of
thicknessH, which in turn is bonded to a rigid substrate, is
presented in Figure 11. The top layer is biaxially compressed by
compressive stregg. The top and the bottom layers have moduli
E; andE, and Poisson’s ratios, andwy, respectively. Huarij
analyzed the buckling of the top layer by modeling the deformation

rise asH/h rises because the constraint of the rigid substrate to Of the top layer by von Karman’s nonlinear plate theory. The

the out-of-plane deformation of the elastic gel layer diminishes
with risingH/h. However, as the viscous layer becomes infinitely
thick, both the fastest growing wavelength and the equilibrium

nonlinearity of von Karman'’s plate theory allowed him to obtain
the equilibrium amplitude of the wrinkles as a function of the
in-plane compressive stress, wavenumbggE;, and H/h

amplitude saturate. The growth rate of the fastest growing (équation 3.2 of Huang et &j):

wavelengths also rises with risitifh because the constraint of
the rigid substrate to the flow in the viscous layer diminishes
with rising H/h.

The fastest growing wavelengths and the corresponding
equilibrium amplitudes are plotted against the modulus of the

top layer for various values of the polymer solvent interaction
parametey in Figures 9 and 10, respectively. The fastest growing
wavelength falls, and the equilibrium amplitude rises as the affinity
of the solvent for the gel riseg (alls) because better solvents

create higher compressive strain that promotes low-wavelength,

high-amplitude wrinkles.
3.2. Wrinkling of an Elastic Gel Top Layer Bonded to an
Elastic Bottom Layer. The buckling of a compressed elastic

Wi1=v7 o, 2h? EA |12

E 32%1—v3 mEh

= (19)

where/ is the wavelength of the wrinkles, andis a function
of the thickness and Poisson’s ratio of the bottom layer and the
wavenumber (equation A.14 of Huang ef3L.

(L= I3 — 4w sinh(KH) — 2kH]
" (3— 4v,) cosB(kH) + (kH)2 + (2v, — 1)?

(20)

Here,k = 27/ is the wavenumber of the wrinkles.

layer bonded to another elastic layer has been analyzed by many Whenthe top layer is a cross-linked elastic gel that has absorbed

authors!t6:24.2528,37,5154 Allen24 analyzed the buckling problem

by approximating the deformation of the top layer by Euler’s
linear plate theory, and the linear elasticity with the Hookean
constitutive equation for the bottom layer. However, he did not

an equilibrium amount of solvent, its modulls= E¢; &3 is

a function of the equilibrium gel volume fractigsp . The in-
plane stress generatet, is also a function of the equilibrium
gel volume fraction and the concentration of elastically effective

consider the shear stress atthe interface of the layers and neglectectoss-links, and can be predicted from equations 11 and 16.

the in-plane displacements. Groenewdldnalyzed the same

(51) Chen, X.; Hutchinson, J. W.. Appl. Mech2004 71, 597.
(52) Groenewold, JPhysica A2001, 298 32.

(53) Chen, X.; Hutchinson, J. Wscr. Mater.2004 50, 797.

(54) Huang, Z.; Hong, W.; Suo, Zhys. Re. E. 2004 70, 030601.

Figure 12 shows the equilibrium wrinkle amplitude of a gel top
layer that has absorbed an equilibrium amount solvent as a
function of the wrinkle wavelength. Nonzero equilibrium
amplitude exists only for an intermediate wavelength window.
Outside the window equilibrium amplitude is zero, that is, the
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Figure 13. Critical compressive stress forwrinkling and compressive Figyre 14. Wrinkling window with the top layer Young’s modulus
stress generated in the top layer at equilibrium solvent content versus;pgy, as axes and the bottom layer modulus as a parameter. For a
the ratio of top to bottom layer Young's moduli for various values given bottom layer modulus, any combination of top layer modulus

of x. andy that falls below the corresponding line would produce wrinkles.
top layer does not wrinkle. The bending stiffness of the top layer 60 — -
disfavors the low-wavelength wrinkles, and the constraint of the a v.=03v =05
bottom layer disfavors the high-wavelength wrinkles, allowing % s0f g =1 mpa Hh=0.5
the top layer to wrinkle only at some intermediate wavelength %~ b Generated
window. It will be shown later that the window shrinks as the ¢ 40 | 1 =04 stress .
top and bottom layer moduli and/gmrise, and/or the thickness % 30 (for all Hih)
ratio H/h falls. Therefore, a critical condition exists where the ¢ 3
equilibrium amplitude is zero at all wavelengths and the flattop 2 55 |
layer is stable. The critical compressive stress can be predicted £ Critical
by treating oo as an unknown and setting the maximum £ 10} stress
equilibrium amplitude of eq 19 to zero. o
Figure 13 shows the critical compressive stress as a function 0 5 150 1650
of the top layer modulug; for various values of and given Top / base modulus ratio, E'° /E,

values ofE, andH/h. The critical compressive stress is a weak . . . L .
Figure 15. Critical compressive stress for wrinkling and compressive

quCtlo_rllr:)fx:l plcf)ts f?]r var_lpusl, values of fall on top Zf ?g‘Ch h stress generated in the top layer at equilibrium solvent content versus
other. The plot for the critical compressive stress divides the yhq ratio of top to bottom layer Young’s moduli for various values

plane into two regions: below the plot the top layer is stable, of thickness ratidd/h.
and, above the plot, the top layer wrinkles. For a given top layer

modulus, the critical condition predicts the minimum compressive 08 L B

stress required to wrinkle the top layer. For a given compressive ; v, =03,v =05

stress, the critical condition predicts the maximum valu&:of 0.7 E,=1MPa ]

for the top layer to wrinkle. The critical compressive stress of 06 | ]

the top layer rises witlk; because the bending stiffness of the

top layer rises wittE;. w 05 3
Figure 13 also plots the compressive stresses generated in the i

top layer that has absorbed an equilibrium amount of solvent for 04 .

various values of and given values df, andH/h. The top layer ;

will wrinkle only when the compressive stress generated is greater 03t ]

than the critical stress for wrinkling. For every valueothere 02 E ) )

exists a range of values @& for which the top layer would 1 10 100 1000
generate enough compressive stress to wrinkle. Figure 14 shows
plots of wrinkling windows withE; andy as axes anéy as the
parameter. For a given value Bf, the region below the curve  Figure 16. Wrinkling window with the top layer Young’s modulus
shows combinations d andy that would produce wrinkles, ~ andy as axes and the thickness ratith as a parameter. For a given
and the region above the curve shows combinations that Would}"’j‘llue O}CH/h'ha”y combination Olf the tOpl layer modulus %f‘mat
not. As the value of rises, the equilibrium solvent content falls, alls below the corresponding line would produce wrinkles.
causing the generated stress to fall below the critical stress foras H/h increases because thicker bottom layers provide less
wrinkling. Further, the generated compressive stress peaks withconstraint on wrinkling. However, the critical compressive stress
rising values of;, causing the coatings with an intermediate top becomes insensitive to the valuestth asH/h — c because
layer modulus and lowy to be the most prone to wrinkling. As  the presence of the rigid substrate no longer constrains wrinkling.
Ep rises, the wrinkling window shrinks because the constraint of The compressive stress generated depends solely on the
the bottom layer opposes the wrinkling of the top layer. concentration of elastically effective cross-links apdand
Figure 15 shows the critical compressive stress and the therefore does not change withh. Figure 16 shows plots of
compressive stresses generated in the top layer that have absorbegrinkling windows withE; andy as axes anH/h as the parameter.
an equilibrium amount of solvent as a function of the top layer For a given value oH/h, the region below the curve shows
modulusk; for various values ofi/h and given values d&, and combinations of; andy that would produce wrinkles, and the
x- For a given value oE;, the critical stress for wrinkling falls  region above the curve shows combinations that would not. As

Top modulus E‘°, MPa
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Figure 17. Equilibrium wrinkle amplitude versus wrinkle wavelength for various values of (A) the top layer modulus, (B) the bottom layer
modulus, (C)y, and (D) the thickness ratid/h.

H/h falls, the wrinkling window shrinks because the proximity However, the effect dfi/h on wrinkle amplitude and wavelength
of the rigid substrate opposes the wrinkling of the top layer. diminishes asl/h— o because the presence of the rigid substrate
The maximum equilibrium amplitude peaks and the corre- no longer constrains wrinkling.
sponding wavelength rises with the top layer modulus. Figure
17A shows the equilibrium amplitude of a gel top layer that has 4. Conclusions
absorbed an equilibrium amount of solvent as a function of wrinkle
wavelength for various values of top layer modulus and given ~ An in-plane constrained cross-linked gel layer absorbs an
values ofEp, H/h, andy. The equilibrium solvent content, in-  equilibrium amount of solvent and experiences in-plane com-
p|ane Compressive strain’ and therefore the stored Compressiv@reSSive stress. The equilibrium solvent content can be predicted
elastic strain energy that promotes Wrink“ng fall with rising top by Setting the chemical potential difference of the solvent inside
layer modulus. HoweveE/Ey rises, and therefore the constraint and outside the gel equal to zero. The equilibrium solvent content
of the bottom layer that opposes wrinkling falls with rising top is @ function of the concentration of cross-links and the polymer
layer modulus. The interplay of these two opposing factors causessolvent interaction parameterThe in-plane compressive stress
the equilibrium amplitude to peak. The wavelength rises &jth ~ can be predicted from a rubber elasticity constitutive equation
because the bending stiffness of the top layer rises Hith and is also a function of the concentration of cross-links and the
The maximum equilibrium amplitude and the corresponding Polymer solventinteraction paramegei he equilibrium solvent
wavelength fall with rising bottom layer modulus and given content and in-plane compressive strain fall with rising con-
values of;, H/h andy (Figure 17B). AsE, rises, the bottom centration of cross-links and falling affinity of the solvent for
layer disfavors out-of-plane deformation, and equilibrium the gel. However, the in-plane compressive stress peaks with
amp”tude falls. A|50, as lErises’ the constraint of the bottom rising concentration of cross-links because Swe"ability and in-
layer rises, which disfavors long wavelength wrinkles. plane compressive strain fall and modulus rise with rising
The maximum equilibrium amplitude falls and the corre- concentration of cross-links. The in-plane compressive stress
sponding wavelength falls insignificantly with the falling affinity ~ falls with falling affinity of the solvent for the gel.
of the solvent for the gel (highes) and given values dE;, Ey, Stability analysis of a cross-linked elastic gel that has absorbed
andH/h (Figure 17C). As the affinity of the solvent for the gel an equilibrium amount of solvent and attached to either a viscous
falls, the equilibrium solvent content, in-plane compressive strain, or elastic bottom layer can be used to examine the effect of the
and therefore the stored compressive elastic strain energy thatop and bottom layer modulus, the thickness ratio of the layers,
drives wrinkling fall, causing the equilibrium amplitude to fall. and the polymer solvent interaction parameter on the critical
The maximum equilibrium amplitude and the corresponding conditions of wrinkling, and the wrinkle wavelength and
wavelength rise with the rising bottom layer to top layer thickness amplitude. When the bottom layer is viscous, the compressed
ratioH/h and given values d&, E,, andy (Figure 17D). AH/h top layer is always unstable, and wrinkling is a kinetic process.
rises, the constraint of the bottom layer that disfavors wrinkling The viscous flow of the bottom layer controls the kinetics and
falls, causing the wrinkle amplitude and wavelength to rise. selects the fastest growing wavelength that is most likely to be
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observed at equilibrium. As the elastic gel layer modulus rises, compressive stress generated does not change, so that coatings
the fastest growing wavelength rises and the equilibrium amplitude with a low bottom layer modulus are most likely to wrinkle.
falls because the bending stiffness of the elastic layer rises with Wrinkle amplitude and wavelength fall because the constraint
its modulus. As the thickness ratitthrises, the fastest growing  of the bottom layer rises with rising bottom layer modulus. As
wavelength and the equilibrium amplitude rise because the the thickness ratibl/hrises, the critical compressive stress falls,
constraint of the rigid substrate to the out-of-plane deformation but the compressive stress generated does not change, so that
of the elastic gel layer diminishes with risiktjh. As y falls, the coatings with highH/h are most likely to wrinkle. Wrinkle
fastest growing wavelength falls and the equilibrium amplitude amplitude and wavelength rise because the proximity to the rigid
rises because better solvents create higher compressive straisubstrate that opposes wrinkling falls with risid¢h. As y falls,
that promotes low-wavelength, high-amplitude wrinkles. the critical compressive stress does not change, but the compres-
When the bottom layer is elastic, there exists a critical sive stress generated rises; thus, coatings absorbing solvents with
compressive stress. If the generated compressive stress is greatéow y are most likely to wrinkle. Wrinkle amplitude rises because
than the critical stress, the top layer wrinkles. As the top layer better solvent generates higher compressive strain energy, which
modulus rises, the critical compressive stress rises, and thepromotes wrinkling, and wavelength does not change significantly
compressive stress generated peaks at an intermediate valueyith falling y.
causing coatings with top layers of intermediate modulus to most )
likely wrinkle. Wrinkle amplitude peaks because the generated _Acknowledgment. This research was supported by the
stress peaks, and wrinkle wavelength rises because bending#zndu.smal. Partnership for Regegrch in Interfacial and Materials
stiffness rises with rising top layer modulus. As the bottom layer ngineering (IPRIME, www.iprime.umn.edu).
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