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ABSTRACT: Experiments on solution-cast blends of two anionically synthesized monodisperse star-shaped
polyisoprene molecules of widely different molecular weight exhibit a very rich rheological behavior. The
time-dependent moduli are exponentially dependent on the relative volume fraction of each species. This
work models these new features by extending existing theories for monodisperse melt of star polymers
to the blend of two monodisperse star polymers with different molecular weight, keeping the same
chemistry. The theory is based on the tube model with constraint release for star polymers in both an
approximate and then a more exact level. The latter, with its treatment of nonactivated as well as activated
breathing modes, is able to account quantitatively for the huge range of blend rheologies. With no extra
parameters, it is able to account qualitatively for relaxation times and entire relaxation functions that

vary over many orders of magnitude on blending.

1. Introduction

The theory of the tube model'~3 first introduced for
concentrated solutions and melts of linear polymers has
been very successful in describing complex viscoelastic
behavior. The main relaxation processes for such melts
occur via tube length fluctuation and at lower frequen-
cies by reptation. The reptation relaxation process
describes the motion of the linear molecule along the
length of its tube contour. This enables the molecule to
escape its original tube to explore new paths. This tube
concept was also applied to branched polymers and has
been particularly successful. Branched polymers with
a range of architectures have been studied in both
monodisperse and polydisperse (commercial LDPE)
form.* The simplest branched molecule is the one having
a single branch point linking together three or more
linear molecules having the same molecular weight.
Such a branched molecule is called a star-shaped
polymer molecule or star polymer. The main difference
from linear polymers is the existence of the branch
point. This will disallow the reptation of one arm of the
molecule along its own tube, because the branch point
acts like a pinning point for the entire molecule.
Consequently the rheological properties of branched
structures are significantly different from those of linear
polymer melts.>

Although the relaxation by reptation is almost sup-
pressed, the star molecule can still relax via arm
fluctuations.® The free end of the arm can retract along
its own tube and then explore a new path by extending
back in another direction. This constrained diffusion of
the free end of one arm is modeled as a particle moving
through a potential well U(s), where s measures the
distance of retraction along the tube. The retraction
therefore can be seen as an activated process with a
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defined attempt frequency which derives from the
lowest Rouse mode of the arm. U(s) is itself calculated
from the energy of chain configuration.8 Because each
segment of the arm will have a different relaxation time
that is exponentially dependent on the distance from
the free end, the segments near the free end relax their
stress by renewing configuration much faster than the
ones near the core. Then the fast segments of the
molecule are acting as solvent for the slow segments at
the longer time scales associated with the with the slow
segments’ stress relaxation. This is called the dynamic
dilution® model of constraint release. In the monodis-
perse case it works very well.1°

For linear polymer melts, the constraint release is
harder to treat because of the less well-separated
relaxation times, and therefore it needs more sophisti-
cated models to treat it.!?

Because most applications are blends or polydisperse
systems and often have both polydispersity in the
molecular weight distribution and a mixing of random
polymeric branched structures, it is of importance to
understand the rheological properties of blends. The
first step in studying and understanding the behavior
of such complex polymeric liquids is to focus our
attention on the simplest one. The simplest blended
system where reptation does not occur is a blend
composed of two monodisperse star-shaped molecules.
The two molecules share the same chemistry but they
each have a different and well defined molecular weight.
Conversely, the question for any molecular model is:
“Can this model be extended to polydisperse systems
and blends?”. Indeed blends are a hard test. For example
blends of linear molecules and stars molecules are
extremely complex because linear polymers can still
reptate. We will see that star—star blends give an
enormous range of rheological response. This work may
also be regarded as step along the way toward develop-
ing and verifying rheological models for melts of differ-
ent topology. It is very difficult to ascertain the topo-
logical structure of a melt (number and location of
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branches) by any existing experimental probes. Rheo-
logical response is, however, quite sensitive to even
small amounts of branching. Comparing measured
rheology to that predicted for an assumed branching
structure could be a very useful characterization tool,
if some rheological models for a rich enough set of
branching structures were available.

In the extension of the models from the monodisperse
to the blend case, the question of the mutual dependence
of the time scale for each species is important. Simple
mixing laws for the modulus such as the relation in (1),

G(t) = (¢1(G1())™" + ¢5(G,)")" 1)

where v is an arbitrary number,'2 are not expected to
work in general because they assume time scales are
not mutually affected by blending. This may be dis-
guised in some cases by preexisting polydispersity on
the blend fractions!® but should find monodisperse
blends a harder test. Indeed, we will find that no mixing
law that assumes the relaxation times of the two species
to be constant can work, because those relaxation times
are observed to vary dramatically as blend fractions are
varied. The relaxation times of the star arms depend
on the dynamics entangling environment, which in turn
depends on the degree of blending.

Limited data on star—star blends (30 and J.° as
functions of composition) have been published,'* but not
at the level of entire relaxation spectra. However, recent
work on monodisperse melt blends has shown how
critical the shape of the relaxation modulus is in testing
a theory.10.15.16

The first part of this paper will describe the chemistry
and synthesis of the star-shaped polyisoprene molecules
as well as the rheological measurement. There follows
the theoretical section that deals with the blend of star
polymers first using the approximate constraint release
model® and then using a more refined model that allows
us to have access to the prefactors and Rouse regimes?®
in the calculation of the complex moduli G' and G". We
conclude with a few remarks and possible extension of
our work. A control blend of a three-arm stars contain-
ing 10% of “two-arm” contaminant was made using
precursor (arm) material of 95k.

2. Experimental Section

Synthesis. Benzene was distilled from sodium—
potassium alloy on to solvent-free n-butyllithium and
allowed to stand for several hours before distilling into
the reactor. Methyltrichlorosilane was purified by distil-
lation on the vacuum line and dissolved in benzene. sec-
Butyllithium was distilled under high vacuum on to a
coldfinger in a short path length apparatus and dis-
solved in benzene. The concentrations of the solutions
of MeSiCl; and sec-BuL.i were determined by hydrolysis
and titration and appropriate quantities were ampou-
lised. Triethylamine was stored over sodium—potassium
alloy. Isoprene was treated with dibutylmagnesium for
at least 12 h then distilled onto n-BuLi and kept at —10
°C for an hour before distilling into the reactor. Polym-
erization of the isoprene was initiated by benzene by
sec-BuLi and was allowed to proceed for 24 h to ensure
complete reaction and the chains were then capped by
the addition of some 5 units of butadiene. A small
sample was withdrawn and analyzed by SEC using a
Waters 150 instrument calibrated with a set of Polymer
Laboratories polyisoprene standards. MeSiCls was in-
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Figure 1. SEC chromatograms of parent arm M = 144 000
(upper trace) and, after fractionation, the resulting three-
armed star (lower trace). Time axis is in min.

troduced to the reactor in an amount such that there
was a ratio of living polymer:MeSiCl; = 3.1:1, and
reaction was allowed to continue for several days before
methanol was added to terminate the small excess of
living polymer. The star polymers were purified by
fractional precipitation from 1% solutions in toluene by
the addition of methanol. SEC was used to monitor the
progress of the fractionation.

SEC analysis showed that the arms and the three
armed stars derived from them had narrow molecular
weight distributions (My/M,, = 1.02) and that fraction-
ation had successfully removed the excess unlinked arm.
Figure 1 shows the chromatograms for the higher
molecular weight arm and resulting star: those for the
lower molecular weight pair were entirely analogous.
The elution times for the stars corresponded to the
anticipated molecular weights when allowance was
made for their architecture,1” and there was no evidence
for the presence of any coupled arm contaminants. The
GPC trace of this blend gave a noticeably wider peak
than either of the single-component materials used in
this study. Additional confirmation of the molecular
weights and monodispersity was made by multiangle
light scattering attached to the GPC column. Antici-
pated and measured molecular weights were within
experimental uncertainties of 28 000 and 144 000 for
the lower and higher molecular weight three-arm stars
respectively.

Rheology. Rheological experiments were made on a
Rheometrics RDAII rheometer in oscillatory mode.
Frequency sweeps from 1072 to 102 rad-s™! at temper-
ature from 25 to 120 °C were time—temperature super-
imposed using WLF parameters for polyisoprene. Strains
were everywhere within the regime of linear response.

Other data from experimental rheology of star poly-
isoprene molecules are available from ref 5 in the
monodisperse case showing a broad range of rheological
behavior. The binary polymeric blends we have modeled
here are composed of star-shaped polyisoprene whose
arm molecular weights are, respectively, 28 000 and
144 000.

As shown by data for monodisperse melts of star
polymers in Figure 2, the rheology is extremely sensitive
to the molecular weight: the bigger the molecule is the
wider the spectrum of the relaxation time function.
Indeed for the unblended star of the higher molecular
weight, our data do not quite reach the terminal zone
even at the highest temperatures and the longest
experimental times consistent with the stability of the
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Figure 2. Experimental data on star melt: M; = 28 000 monodisperse (top left); M, = 144 000 monodisperse (bottom left).
Blends: 20/80 (top right), 50/50 (center left), 80/20 (center right). Bottom right: linear polyisoprene M = 475 000.

sample. We also include rheology on a high molecular
weight (475k) monodisperse linear Pl for comparison
(see Figure 2). As previously reported,® the spectra of
the star polymers is quite different in nature from the
nearly single mode from of the linear material. This
arises directly from the different mechanism of stress
relaxation (arm fluctuation vs reptation). When blend-
ing these two star-shaped molecules with such different
relaxation spectra, the rheology exhibits a new qualita-
tive behavior at each composition, especially for blends
whose composition contains a majority of low molecular
weight star. Indeed, from the blend data shown in
Figure 2, the most striking qualitative shape of G’ and
G'" appears for the blend which contains 20% of the high
molecular weight star. For such blends, G' and G" are
closely interlaced and exhibit a “double hump”.

The data also clearly show that relaxation time scales
themselves are strong function of composition. The 80/
20 blend, for example, has a terminal time which is far
greater than that of the monodisperse melt of low
molecular weight star and simultaneously much smaller
than that of the high molecular weight star melt. So
even for this simple sort of blend, phenomena arise
showing that dynamic interactions between the two
species cannot be ignored.

3. Theory

In this section we briefly review essential prerequi-
sites of the theoretical development in the following
section. Following initial treatments of entangled arm
fluctuation,®” Pearson and Helfand® have calculated the
resulting relaxation spectrum in the case of a star
polymer molecule relaxing in a fixed network. Retrac-
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Figure 3. Star polymer and its tube: curvilinear coordinate
s.

tions of the free end along a tube distance s occur in an
effective potential well U(s). In a fixed network U(s) is
quadratic in s. In consequence the relaxation time z(s)
for the segment at s grows exponentially with the square
of the distance to the free end for a star-shaped
molecule. The model was later extended in an ap-
proximate way to melts of star polymer molecules® and
showed in this case that the potential has a cubic
correction induced by the dynamic dilution of con-
straints. Recent improvements?® calculated the prefactor
for 7(s) ~ exp(U(s)), and allowed for rapid processes near
the free end. We first recall the main results for these
theories in the monodisperse case. Then we extend these
models to the blend case.

A. Retraction Potentials. The main relaxation
process in a melt of monodisperse star-shaped polymer
molecules occurs via arm retraction (see Figure 3).
These dynamics occur in an effective free energy poten-
tial which conveys an exponential dependence on the
curvilinear coordinate s of the relaxation time function
7(s). Because of this exponential dependence, each tube
segment has its own relaxation time and will relax more
or less rapidly depending on its distance from the free
end. It is then obvious that the faster segments will not
constrain at all the movement of the very slow segments
standing near the branch point, and therefore, the
former will act then as solvent for the slower one. This
is what is meant by dynamic dilution.

First, we review the calculation in the simplified
problem where dynamic dilution is not taken into
account: the free end retracting into its tube is modeled
as a particle moving through an harmonic potential
well. Solving the modified first time passage time
problem for the free end moving through a potential well
U(s) in an approximate way, leads to the following result
for the relaxation time of the arm:

2V( ) o) ?)

The physical motivation for this approach is the imposi-
tion of Boltzmann weight e?Y for an incremental retrac-
tion As, for which a typical waiting time is 7(s). The
solution to (2) is

dr(s) _  dU(s) _
ds =10) 0s

7(s) = 1, exp{ k('sl')} )

where 19 is an “attempt-time” for arm retractions. At
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an approximate level, 7o was to be taken as constant,
though this is not a necessary condition (see section 3B).

The potential well is then the path length free energy
potential scaling as the square of the distance. This
comes from the rubber-elastic entropic constraints on
the chain given the position of its free end:®

kgTv
MM

U(s) = + constant 4)

The curvilinear coordinate s measures the tube length
from the free end to the branch point and ranges from
0 to M, the molecular weight of the arm. Mo is the
entanglement molecular weight. The parameter v comes
from the tube model and is equal to 15/g.9 We call U(s)
the “bare potential” as it will be modified when applying
the constraint release hypothesis.

The key assumption of the dynamic dilution hypoth-
esis for the relaxing arms is to modify the bare potential
as the entanglement molecular weight varies at the local
level as

M,(s) = (1 = %)7‘1 M., ®)

The exact choice of o depends on the concentration-
scaling of the entanglement molecular weight (and
hence Gyp). The “naive” value of a is oo = 1, which results
from arguing that the arc-length between entangle-
ments along a chain in a network diluted by a factor of
¢ scales as 1/¢. Experimental values of alpha obtained
from the plateau modulus of theta solutions as a
function of concentration suggest o = #/3, which is in
agreement with a subtle scaling argument of Colby and
Rubinstein.?® However, in ref 10, it is found that taking
o = 1 results in acceptable descriptions of rheological
data if one takes a value of Mgy some 20% too large.
For simplicity, we follow this approach here. Replacing
expression 5 into the differential equation (2) for the
time relaxation function leads to a new expression:

2 3
7(s) = 1, exp[MZ:M (‘% - BS_M)] (6)

Therefore the new effective potential has a cubic cor-
rection:

2kaT(52 $ ) -

Verl®) = M2 ~ 3m

When one is calculating the terminal time for both
expressions 3 and 6, the constraint release calculation
reduces the value of Ug(M) by a factor of 3.

7(M) is therefore reduced by a very large factor of exp-
(2/3vMIM). This factor is then transmitted through the

viscosity 7o by the relaxation modulus G(t) as it depends
on the relaxation time function z(s)

o= [, G(t) dt ®)
with
e = [ as CCP epvrs) @

where ®(s) = 1 — s/M is the entangled volume fraction
for monodisperse stars.
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Figure 4. Computation of G"(w) for three different values
for the molecular weight of arm M, = 28 000, 63 000, and
144 000 and a value of M. = 4000, representative of PI, using
the no prefactor model.

It is simple to derive analogous expressions for G'(w)
and G"(w), the storage and loss moduli—as the real and
imaginary parts of the complex modulus G*(w):

|a)r(s)
wt(s)

In the monodisperse case as shown in Figure 4, the
loss modulus for star polymers shows a wide range of
relaxation times.

B. Prefactors for t(s) and Fast Processes. A recent
work,10 which we will require, takes into account two
main features that allow a fully quantitative account
of the entangled dynamics of star polymers: first we
have to consider that for small s, whenever Ugq(s) < kgT,
arm retraction is not activated and it is rather the fast
Rouse-like diffusive motion of the free end along the
tube that controls the tube-segment relaxation times;
second we will have access to the prefactor of the
exponential term by calculating the first passage time
for a diffusing free end to retract to a length s, the
effective potential being given.

When the potential Ugg(s) is much smaller than kgT
then the part of the molecule that fulfils this condition
is not conditioned by this potential but will freely diffuse
via the curvilinear superposition of Rouse modes of the
chain. This occurs only near the free end, because the
large free energy for deep retractions strongly favors
the lowest Rouse mode there. The early fast diffusion
movement of a small fractional distance x of the free
end leads to the following expression for its relaxation
time function, where x = s/M is the normalized curvi-
linear coordinate (ranging from 0 to 1):

G*(w) = 2G, j; (1 = siM) ds  (10)

22573 M \4
%) =556 (m) rox’ (11)
e

The form of this relation arises from the non-Fickian
monomeric Rouse diffusion: x(t) O tY4. For the other
parts of the molecule that do not fulfill the above
condition, the arm retraction is activated. Solving the
first time passage problem for the free end to retract to
a deep segmental position x gives the following expres-
sion for the activated relaxation time function with its
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prefactor:

X =5

L2 exp(U,(x)) [ )1’2 (12)

Dt [(UL(X))? + 2UL(1)/7] 2\ 2U5(0)

The coefficients L and Dt are respectively the path
length of the arm and the effective curvilinear diffusion
constant of the free end and are related to 7o, the Rouse
time for an entanglement length as mentioned below
in relation 33.

Putting together the expression for the two relaxation
functions 7e(x) and 74(x) in a crossover formula leads to

7e(X)
e ) + 7 (x)/7,(X)

7(X) ~ (13)

Relation 13 is substituted into the expression of G(t)
which remains unmodified from (9). The application of
this approach to the two monodisperse components of
the blend series is given in Figure 2.

C. How to Treat Star Blends. The case of blends is
a hard test for these models of entangled branched
melts. The blend of our experiments is composed with
two polymer star-shaped molecules having the same
monomeric chemistry, but differing only in their total
molecular weight. The large one is more than 5 times
larger than the small one. For such a blend, we do not
expect a simple mixing law because time scales for
relaxation of the two components are mutually affected
in a very strong manner. The system has a different
time scale for each species of star polymer molecule
driven by a differential equation analogous to eq 3

dzi(s;
;i)—r@)

TS ,)— i=1,2 (14)

where c(s;) is the concentration of material (from both
components) that is not relaxed at the time 7;(s). Clearly
the functions ti(s) will depend on the arm molecular
weight, M;. Let introduce z = si/M;i¥2, s; € [0, Mj]—we
find this is the coordinate for relaxation which is
universal among stars of different arm molecular weight
because it eliminates all dependence on the molecular
weight as seen below in (15)—the transformed version

of (14) for any i. Then 7(z) is universal: it obeys a
differential equation independent of M.

dz(z

= (e 2 (15)

The concentration function of the melt, c(z), depends
on the molecular weights of each species, but it now is
reduced to one universal arc length coordinate

B S, s,
c(z)=1- qubl + E‘Pz (16)
c@):l—(jﬁ_ Jﬁ_ L 2= M, (@)

Here without loss of generality M; < M. For z >
M, all parts of the smaller star have relaxed, so
changes to the entanglement network arise only via the
relaxation in M,. So the effective concentration of
unrelaxed segments after the smaller star has com-



9300 Blottiere et al.

pletely relaxed has the following form:

c2)=1—¢, —

J_ z, JM;<z=,M, (18)

Therefore we have two domains, which we refer to as
o and g for the differential equation to solve, describing
the evolution of the relaxation time function 7(z):

(D) 2y ¢1 &, -

“ Lo mt T \m ] C 2= a9
LD _ 2|, g

B %_Me ¢, — F \/_ . \/—

(20)

The two domains connect via the mutual boundary

condition 71(,/M,) = 72(,/M,). This leads to the follow-
ing results for the final expressions of 7(z) at the level
of the effective potential. The exponential coefficient in
expression 22 is due to boundary condition of 7(z) at z

= /My for z < \/M;

3
.(2) = 7, exp{ 2”122 (fMl_Jrf'\;_)%” 21)
€ 1 2

andfor\/M_1<zs«/M_2

2 3
exp{ [(1 4% - fv %”
2

(22)

v, M,
74(2) = 7o EXP M,

After all expressions were retransformedin order to
get functions depending on x only (x ranging from 0 to
1), we introduce now this new expression for 7, and 74
into the expression of G(t) via the contribution of each
star. To avoid any confusion in our notation, we intro-
duce new labeling for the concentration function and
the time relaxation function: the first subscript notation
refers to the species, rather than the domain of solutions
of the differential equation. Let us use the subscript
label “1” for the smaller star and the subscript label “2”
for the larger molecule. The problem that arises con-
cerns only the large molecule as the concentration
function and the relaxation time function split over the
domain of solutions. Therefore we add this second
subscript to that which this indicates on which domain
the functions apply: “a” and “f”. For the same reason,
the integral correspondlng to contributions from the
larger star splits into two parts as the concentration
function does so as seen above:

G(t) 1 —_— 1 (s
5, = 2¢, [ cx)e "0 dx, + 26, [Tc(x)e 0 dx,

(23)
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Figure 5. Effective potential of the big star (diamond curves)
and small star (star curves) for different values of the volume
fraction ¢; of the small star, using the no prefactor ap-
proximate model extended to the blend.

This leads to the following expressions for the rigidity
and loss moduli

G'(w) 0*1y(X)
G 24)1](; l( ) 2’1,'12(X)
+ 2¢ f\/ MM, ) wZTZa(X)
*/o o 1+ w2T2<12(X)
1 w’t x)
20 s T g @
G"( ) 7,(X)
J— 2 -
b fyeile pn 0?7, 4(X)

+ 2¢, f«/ M1/M, C, (X)L“(X) dx

‘L'Za (x)

WT,4(X)
1+ a)zrzﬂz(x)

1
+2¢, [ i C26(%) dx (25)

The prefactors to expressions for the relaxation time
spectrum require for our system the form of Ueg(x) for
each component. As for the case of monodisperse stars,
this is implied by the solutions for z(s) in relations 21

and 22. So we may write
M |x
—|pt o 4/ )—
1 2 2 3
M, |x
= (82 + dp/ 2);] (27)

2VM2¢’2[_ . _] 1¢1

2vM,

X
Ueff l(X) = M

(26)

e

e

2vM,
Ueff Z,Q(X) = M

Uerr 25() = (28)

Figure 5 displays the effective potential of the small
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and large star molecules. We will discuss later on in
the next section all implications for such curves.

Now let us focus on the fast diffusion of the free end.
In the monodisperse case we have seen that the char-
acteristic times are given by relation 11. In a blend of
two monodisperse singly branched polymers this leads
to the two characteristic time functions for each species:

2257%(M;)*
te,l(x) = 256 V) ‘UOX4 (29)
e
22575 (M)
re,Z(X) = 256 V) TOX4 (30)
e

Now the first passage time may be considered: the
general form of (12) requires the first and second
derivative of the potential functions in order to obtain
the prefactor in the expressions of the activated relax-
ation time functions. Finally, the crossover formula 13
of the early diffusion relaxation time function and the
activated relaxation time function will be substitute in
the expression of G'(w) and G"(w). In the next section
we compare this calculation with the experimental data
and discuss the results we have obtained, for the
potential functions, the time scales, and the moduli.

4. Discussion

This section is devoted to the analysis of the expres-
sions for the relaxation moduli 24 and 25 that we
obtained for the binary blend of stars. The moduli are
built from the entropic potential functions 26—28, which
enter the time relaxation functions. The time scale
enters also the moduli expression via the prefactors of
the relaxation functions z(x) which are given by relations
21 and 22. We restrict our discussion to the ratio of
molecular weights represented by the data. Other
choices do not alter the qualitative behavior.

Potential. The potential functions are a fruitful
source of insight into the dynamic interaction of the two
components. A first look at the potential curves for the
small star and for the large star (Figure 5) shows for
both molecular species a strong dependence on the blend
composition.

For the small stars, as ¢1 decreases from 1 to O, the
potential increases but with a drastic change in its
shape: at ¢; = 1.0, the well-known dynamic dilution
shape is recovered for the potential, but as the density
of small star decreases, the potential curve tend to an
asymptotic harmonic curve. We will comment on this
further below. The final value of the potential, i.e., for
x = 1.0, is almost doubled going from 4.3 (¢; = 1.0) to
8.3 (p1 = 0.2).

This effect is even greater for the large molecule: at
x = 1.0, the value of the potential is 5.2 for ¢; = 0.95
and equals to 18.8 for ¢; = 0.2. For high values of ¢,
the shape of the potential is highly altered: there is a
strong “knee” at a well-defined value around x =
J/Mi/M,. This corresponds to the point at which the
smaller stars complete their relaxation. Beyond this
point, the potential is flattened by the diluting effect of
the small molecules. This means that the large molecule
can retract its arms more easily inside their tubes than
at lower values of ¢; and, of course, than in the pure
dynamic dilution case. The small molecules® help” the
large ones to relax by softening their potential.
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On the other hand, the large molecules have an
enhancing effect on the potential for the smaller ones.
In the limit of small ¢;, the presence of much larger
stars in majority is nearly equivalent to a fixed network,
thus taking the effective potential from the dynamic
dilution® to the fixed network® result.

The very first conclusion we can draw is that the large
molecules are more strongly affected, qualitatively and
guantitatively, by the blend composition than the small
ones. The dynamic dilution is enhanced for the large
stars when ¢; increases. The small stars behave differ-
ently: at low concentrations they behave like a star in
a fixed network, and at higher concentrations they
retrieve the melt behavior. This conclusion is remark-
able in that, for blends of star polymers, the relaxation
time spectrum is much narrower in width than a naive
superposition of relaxation components would predict.
The cooperative dynamics induce exponentially strong
motional "narrowing".

Time Scales. The great advantage of working at the
level of prefactors to the exponential of 7(x), that enables
us to ascribe a magnitude to the time scale of molecule
motions. Transposed to the blended case, it allows us
to differentiate between the two molecular species in
the melt as they have different terminal relaxation
times.

The constant parameters in relations 11 and 12,
respectively, 7o, L2, and Deg, are not independent of each
other. First, let us recall their definitions: L is the
length of one arm, D is the diffusion coefficient of one
arm, and 1 is the relaxation time for an entanglement
length. This constants can be expressed by molecular
parameters such as the monomer friction coefficient g,
the monomer length b, the number of monomers N; of
the species “i” and the number of monomers between
entanglements Ne:

L®  5&N;b?
Dy 8kgTN,

(31)

Similarly, 7o has an expression using the same mo-
lecular parameters

gNeZbZ
Tg=—5—— 32
* 3rPKkeT (32)
Clearly, these two relations are linked by
Li2 157%(Ni|?
Deff =T 3 We (33)

From the previous relation, it can be established that
the ratio L1%/Des over L,2/Dess of prefactors scales as (N1/
N>)3. This will have a great impact on the moduli, as it
will shift the components of each species for G' and G"
away from each other. Combining this term with those
arising from derivatives of Ues(x) leads to a final
depe/ndence of the prefactor on molecular weight of (N;/
Ny)32.

Moduli. Having focused our attention on the poten-
tials and the time scales in the above paragraphs, we
can turn now to the fundamental functions that are the
moduli. We will first briefly compare our two models
with the data.
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Figure 6. Left: full tube blend model (lines) and experiments
(circles G' and triangles G'"). Right: no prefactor approximate
blend model (lines). From top to bottom, the blends are
composed as follows: 20/80, 50/50, and 80/20 (small molecule/
large molecule). M; = 28 000, M, = 144 000, and M. = 5500.

Figure 6 shows the plots of G'(w) and G"(w) for the
model with and without calculation of prefactors. Both
levels of modeling predict the moduli very well in the
20/80 case. However the prefactor-level model begins
to do rather better in the 50/50 case, and does spec-
tacularly well in predicting the unusual shape of the
two rheological functions in the 80/20 blend while the
single-exponential approximation fails rather seriously.
This situation contrasts with that of monodisperse star
melts, in which the prefactors make a much smaller
correction to the predicted forms of G*(w). In the
following we use only the full version of the model. The
theory predicts the entire relaxation spectra with no
extra parameters for the widely ranging functions in the
middle of the composition range, even though time
scales range over many orders of magnitude.

From the moduli expressions we have obtained previ-
ously, (24) and (25), we can extract the contribution of
each species; that includes the effect of the other species.
Graph 7 shows such a decomposition for G" for ¢; =
0.2and ¢; =0.8: G" = G'"; + G",. For a low value of ¢,
the majoritory contribution to G comes from the large
stars over a wide frequency range (around 6 decades),
and the contribution of the small molecule becomes
more important at high frequencies over only 21/,
decades and is about the same order of magnitude.
When ¢; is close to 0.8 the contributions of the two
species are more well balanced: still at low frequencies,
the main contribution is due to large molecules (3,
decades) but is soon balanced by the small molecules
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Table 1
blend composition 10°7p 1075Gp, N-m—2
0/100 2.0 2.30
20/80 1.4 4.11
50/50 2.5 4.11
80/20 1.6 4.52
100/0 1.1 4.11

at high frequencies where the small molecules are
dominate over more than 5 decades. Comparison of the
results of our calculations for ¢ = 0.2 and ¢; = 0.8
indicates that the contribution of the small star in both
cases has the same intensity at low frequencies up to w
~ 1, when they alone contribute. At higher frequencies,
the contribution is of course more important when the
small stars are more numerous. Comparing now the
contribution of the large stars at the two previous values
of ¢; gives another picture: over the whole frequency
spectrum, the contribution of the large star is lowered
drastically for ¢; = 0.2.

The effect of the two different time scales can be then
understood from the fact that a large value for the
prefactor time constant, depending on the molecular
weight, shifts the moduli curves toward the low fre-
guencies, and conversely a small value the prefactor
shifts the moduli curves toward the high frequencies.
This time scale ratio is drastically affected by the
“dynamic dilution” of the large stars by the small. When
adding the two shifted curves, it leads to the double
hump shape and interlacement of G' and G" over 2
decades in frequency range in the 80/20 blend when the
contributions of the two species have the same order of
magnitude at o ~ 1.

Parameters and Comparison to Data. The blends
of our experiments consist purely of polyisoprene mol-
ecules. The small molecule has an arm molecular weight
of M; = 28 000, whereas the large one has an arm
molecular weight of M, = 144 000. The molecular weight
of isoprene is Mg = 68. Our calculations do imply also
two other fundamental molecular parameters that are
the friction coefficient ¢ and the monomer length b.
Accepted values for these two parameters can be found
in the literature: log ¢ = —6.41 cgs unit from Ferry!8
and b ~ 6.35 A from Fetters.1® From relation 32, we can
then calculate a value for 7o = 8.4 x 1076 s, at 25 °C,
which is used in our computations. This gives us a very
good value for the fastest relaxation time in the system.
Nevertheless we will have to adjust the value of 7o
slightly, as a free parameter, to fit our calculations with
the data; we have use also a value for M = 5500. This
order-one adjustment seems to be commonly required
when comparing linear and star melts.1° In Table 1, we
give the values for 7o and Go we obtained to fit the
theoretical curves with experimental ones.

We can also compare the experimental values for Gg
with a theoretical value which is given by

G, = "ﬁ—T =4.11 x 10° N'-m 2 (34)
e

The coefficient L;?/Des scales as N;3, the number of
monomers in the molecule; then it differs for the two
stars: for the small star L2/De¢s = 0.02 s, and for the
big star L,%/Dess = 2.80 s. The ratio of the large star time
over the small star time is around 136. This clear
separation of time scales is further (and much more
significantly) amplified by the exponential factors in the
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Figure 7. Full tube blend model: relative component of M,
and M; in G"(w). 20/80 blend.

expression for relaxation times, (22). This will introduce
two different time scales in our expression of G' and G"'.
As we have seen (Figure 6), using these values into our
model gives a good agreement with experimental data
except in the 80/20 and to some extent the 50/50 case
when using the exponential term only; the calculation
of prefactors to 7(s) enhances considerably the fit for
these blend compositions. Nevertheless, we have to
adjust slightly these curves with the data by tuning the
two free parameters Go and 7o for each blend. For each
blend, we have a different set of adjusting parameters,
though these lie within typical experimental errors in
torque and temperature control in the rheological
experiments.

As we can see in the above expressions for the storage
and loss moduli, we can identify two regimes that can
be seen most clearly in the 80/20 blend: in the first
regime, the two entangled molecules start to relax until
the time needed for the small one to have completely
relaxed. During the second regime the long molecules
complete their relaxation.

Blending Rule. The longest relaxation time in the

blend 7 piend is given by relation 22 when x; = z,/,/M,
= 1. By using the approximate relation 6, it can be
shown that

T2 blend — Tl¢1fz¢2 (35)

where 71 and 7 refer to the pure component longest
relaxation time. But it should be noted that this rule is
only true at the constant prefactor approximate model
level. Similar relationships for the viscosity have been
proposed empirically.

Viscosity and Compliance. Previously published
viscoelastic data on a star—star blend* can be compared
to this model. (We evaluate the predictions for 7, and
Je% using Graessley and Struglinski data because their
lower degree of entanglement permitted complete access
to the terminal relaxation regime.) Figure 8 displays
experimental curves (circles) of viscosity 7o and equi-
librium recoverable compliance J.° for a binary blend
of three-arm star polybutadiene molecules with arm
molecular weights equal respectively to 25 000 and
42 333 from ref 14. The full prefactor level model is used
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to compute 7o and J.° via the standard relations:

mo= [o Gt)dt=2G, [ (1 -x)1(x) dx (36)

€ 0
0

w0 2G
30=L Pt dt="2 A -0 PN dx (37

Ul Mo
Figure 8 shows a good agreement between the model
(lines) and experimental data used in the calculation,
M; = 25000 and M, = 42 333 for the arm molecular
weights. To compensate for the choice of o = 1 in
relation 5, we have used a higher value of the molecular
entanglement weight than can be found in the literature:
21 M = 2900. This higher value of the entanglement
molecular weight is consistent with the value obtained
with the linear—star blend as well as the one with have
used for the star—star polyisoprene blend above. In
reference,'* in order to fit the viscosity data with a basic
star theory the authors have used the following expres-

sion:

1o = 1.47 x 10° exp(M/12900) (38)

where M = 3M, and M is replaced by My, = oMy +
¢$2M>.22 The factor of 12 900 in the exponential term in
the above expression seems to correspond to a value of
Me = 2700. Our value is slightly bigger due to the
molecular weight dependence of the prefactor as M372,
for which the choice of M. in relation 38 has to
compensate. The fitting both qualitatively and quanti-
tatively of 5o and J¢° from previous data supports the
accurate fitting of the terminal zone of our own data.
This suggests that the present level of tube model for
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star polymers is accurate across the entire spectrum of
entangled modes including the terminal zone.

5. Conclusions

The picture is now the following for binary blends of
star-shaped molecules. First of all, the dynamic blending
is extremely sensitive to the relative composition of the
melt. On one hand we may have small stars moving
through a relatively fixed network of large stars and
we retrieve the result of Pearson and Helfand. On the
other hand, the small molecules help the big ones to
relax faster by diluting their network. Two régimes are
identified: first both molecules start to relax together
with mutual effect. Then when the small molecule has
finished relaxing, the only remaining molecules to relax
are the big ones, which entangle only with each other.
The cooperative effect gives a strong “motional narrow-
ing” to the time scales.

Where entangled dynamics dominate, our model and
calculations give good agreement with the experiments.
This is true over a wide range of relaxation spectrum,
and the terminal zone in particular. In this case of
blends, the refinements of the prefactor model are
absolutely necessary to treat the data quantitatively.
This is in contrast to monodisperse stars, for which the
no prefactor approximation is less unacceptable. We can
see also that the relaxation times in branched polymer
blends are extremely sensitive to blending, typically
carrying an exponential dependence on ¢.

Finally we conclude that the “dynamic dilution” tube
theory for constraint release in star polymer melts
passes the very severe test imposed by the system of
star—star blends, supporting further development of the
theory to more complex systems. The remarkable result
of this work is that, with no extra parameters, the tube
model is able to account qualitatively for relaxation
functions that vary orders of magnitude on blending.
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