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1 Introduction 
A topical application of this spring school which deals with every day life is polymers. 
Polymers have a very rich behaviour and are ideal for investigations by means of neutron 
scattering techniques. As reported in the appropriate scattering introduction, this is due to the 
natural difference between a proton and a deuteron. Although chemically virtually no other 
properties are induced if some H’s are replaced by some D’s, this labelling allows to study 
e.g. the effect of different environments on the structure of polymers, on parts of the chains 
and so on. This is a strong advantage over scattering by xrays which is limited to systems 
which differ considerably in electron density. The H/D labelling does not change the xray 
scattering patterns. Nevertheless, the latter probe is very often used as a valuable 
complementary technique, especially in multiphase systems. 
The following small treatise on polymers focuses only on the determination of their structure 
using the technique of Small Angle Neutron Scattering (SANS) and by no means is meant to 
be complete in the frame work of the Spring School. After a short introduction into general 
conformations of polymers which is independent of the monomer chemistry, thus generally 
applicable, we will summarize some structural models which describe the statistical properties 
of polymeric chains. Then we will develop some useful scattering approaches for mixtures of 
labelled and unlabelled chains, for linear and architecturally different chains. Details of the 
method of Small Angle Scattering are described at full length in the contribution by 
Frielinghaus (C1) and will not be repeated. Overall, this chapter tries to bridge the general 
text book science for linear polymers to more advanced and architecturally complex polymer 
structures in such a way that an appropriate base to facilitate the understanding of recent 
literature is provided . Therefore, the reader is made familiar with the access by scattering for 
the investigation of amorphous polymers, mostly in the melt state. A good introduction into 
general polymer physics is given in [1-7] and references therein. The connection to scattering 
methods is best treated in [8-11]. We warmly suggest these references for further lecture.  
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Fig. 1: Overview of most important architectural polymer structures as a function of the 
number of branching points. Of these, the linear and the star polymer represent basic 
building blocks for higher complex branched polymers.  
 

2 Polymer Chain Models and Architecture 
A polymer is a chain of several polyatomic units called monomers covalently bonded 
together. Since virtual all kinds of molecules can act as a monomeric unit, thereby only 
differing in the ways in which they can be bound together, a wealth of synthetic and naturally 
occurring polymers with enormous diversity in properties is nowadays known. We mention 
e.g proteins, DNA, glass, thermoplasts and rubber. They all belong to the class of polymers. 
Given their importance, an adequate description of model polymers has become a 
prerequisite. This brief summary serves to introduce the reader to some of the basic models 
with respect to scattering. The simplest descriptions of single-molecule models can then be 
expanded to branched polymers with some minor changes.  
Polymers are often looked at like spaghetti-like or coiled molecules. Their stiffness varies 
from very flexible to rigid in the case of rods. Their configuration i.e their spatial distribution 
of segments changes all the time as the result of brownian dynamics which therefore leads to 
an enormous amount of possible configurations itself. The motion and dynamics of polymers 
will be discussed at full length in the session on polymer dynamics by Richter (E3). Here, we 
will stick to the determination and static investigation of their time-averaged structures.  
To describe the statistical properties of such macromolecules, some variables need to be 
introduced. How can we calculate the size? For this, basic models were developed in the past 
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for linear chains with different levels of sophistication and approximations. We will 
summarize these only here in this chapter on the scattering of polymer chains in equilibrium 
and introduce at this stage also the corresponding length scales. 
 

 
 
 
 
 
 

 
 
 
 

Fig. 2: A freely joined chain and definitions (see text). 
 
The simplest model to deal with is the freely jointed chain (FJC). An example for such a 
configuration is shown in Fig. 2 and illustrates the idea that polymer chains are performing 
random walks. With this, the ensemble of systems can be characterized by average quantities. 
One is the so-called end-to-end vector. 
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whereas the average end-to-end distance 0>=< eeR  due to the ensemble average. With the 
Lagrange theorem a relation between < > i.e. the squared distance between 2 scatterers i and 
j within the chain can be obtained. It states that 
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The calculation of the end-to-end distance which characterizes the full size of a chain i.e. it 
constitutes the diameter of a hypothetical sphere including the full chain, can now be 
performed for different chain models. The upper model of the FJC freely jointed chain 
assumes an equal probability in 3D of all bond vectors, random bond rotation angles while 
keeping the bond length constant. The orientation of each segment or bond is therefore 
independent of all others and as a consequence the 2nd term which is the scalar product in Eq. 
4 averages out to zero. The mean radius of gyration can then be obtained from evaluating the 
double sum in Eq. 5 and using  - a result of random walk statistics -becomes  22 )( lijrij −=

22

6
1 nlRg =  (6) 

From both end-to-end distance and radius of gyration an important statement which applies to 
polymer chains in the bulk or theta state is already observed: the size depends on the square 
root of the number of basic steps, n . This is a result which has its equivalent in the random 
walk statistics where now the position of the monomers is replaced by the trajectory of a 
randomly-diffusing particle and so the variable becomes the time, t .  
It is clear that the size or overall dimension of architecturally more complex branched chains 
cannot be estimated in the same way, basing on the end-to-end distances. This will involve a 
little bit different treatment as will be shown later. 
However, real polymers are also not connected in this freely jointed way. Instead, bond angles 
assume well-defined values and correlations between bonds within the chain as well as from 
the environment will affect the size. Intuitively it can be understood that these correlations 
will vanish with increasing separation distance. Also, the flexibility of polymer chains is 
restricted by the fact that rotations with the so-called bond rotation angle φi are enabled within 
a certain range only due to steric reasons.  
If we take the first FJC model as the reference then the difference to real polymers will be 
quantified in terms of a parameter which is denoted . This is defined as  ∞C
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In the case of the random walking chain in the FJC,  is thus 1 per definition. ∞C
A first refinement is the case of the freely rotating chain model (FRC) in which now valence 
angles are restricted additionally but still torsional angles are left free to rotate. Then the 
flexibility parameter after some calculations becomes 
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which leads to values between 2 and 3 for the typical polymers. θ is the complementary angle 
between 2 bonds. 
A further extension is the chain model with hindered rotation (HRC) which is better known as 
the rotational isomeric state model by Flory. This adds restrictions now also on the torsional 
degree of freedom. Instead, using the rotational barriers, a good estimate for allowed, 
energetically and sterically different configurations can be readily obtained. For , values 
considerably larger than 3 are found. Experimentally, the parameter as determined from small 
angle neutron scattering investigations is situated in the range between 3 and 10. We can 
summarize this by stating that highy-coiled polymers are characterized by low values 
whereas extended or loosely-coiled chains show, on the contrary, high . 

∞C
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The description of chain dimensions thus involves several steps. A summary of currently used 
length scales in the literature which are inherently connected to the random coil description 
and resolution therefore is at its place here. Various expressions found for the chain end-to-
end distance are  
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Here, is the number of backbone bonds per monomer with rms bond length l, is the 
statistical segment step length per monomer and is the Kuhn segment step length. In the 
chain model of Kuhn [24], the correlation between bonds is taken into account so that the 
statistics of the FJC is retrieved for lengths larger than the Kuhn segment length. For this 
purpose, this effective segment length, is introduced, which is related by l

bn stl

Kuhn

Kuhnl

Kuhnl lC∞= . 
Likewise, . The Kuhn segment is thus the minimum length scale above which a 
real chain behaves again like the freely jointed one. It further preserves the contour length 
with l . Due to the direct comparison of molecular weights, provided by the 
synthetic chemists, with computations for the end-to-end distance, the definition of the 
statistical segment length per monomer is slightly more favoured whereas this is, however, no 
strict rule. This is also true for the following sections in this chapter on the scattering of 
polymers. Without going into detail and referring to more general literature [8], also a so-
called persistence length can be defined which is 2 . 
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The distribution of the end-to-end vector is treated in many text books on statistical physics 
and will therefore not be repeated here. It shows that the distribution function p(R) of any 
intramolecular distance follows a Gaussian distribution with 
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3 Scattering: intra- and inter-chain contributions 
3.1 The single-chain structure factor 
A scattering volume contains many polymer chains, each with N scatterers i.e. monomeric 
units here and with a coherent scattering length b. Their density is not constant and shows 
random fluctuations around an average value. 1)( =rni if the monomer of type i sits at . We 
define . The variation in the density is then 

ir
>VNnrn /)( =>=< <−=Δ nrnrn i )()( . The 

static structure factor is defined as the density-density correlation function >+−< )( nqn )( q . 
So, if in the system chains, which all have N monomers with a scattering length b, are 
present the coherent scattering, i.e. the macroscopic differential cross section per unit volume, 
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In the double summations the indices m and l are the monomer numbers and symbol α and β 
are different chains. rα,m is thus the position of the m-th monomer on chain α. This can be 
rewritten into 2 parts: i.e. the intra-chain scattering is due to the contribution from 2 
monomers on the same chain and an inter-chain part arises in the case that both monomers are 
situated on 2 different chains. For the simplest case of a dilute dispersion, we can further 
assume 
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because the chains are sufficiently well separated in space and the phase factor from each 
chain will be completely uncorrelated. Then the contribution of the inter-chain term cancels 
out on average. This allows us to determine the single chain structure factor S1(q). We can 
then re-write Eq. 11 (np and double sum over α,β cancel) as 

 
(13)

We will come back to this in the context of the scattering of concentrated blends where inter-
chain contributions have to be included in the full description. At this point it suffices to 
evaluate for pedagogical reasons the low q expansion. From this the radius of gyration which 
was introduced in the first part of this contribution, independent of the shape or structure can 
be determined. The Taylor expansion of the structure factor for q<< then yields 
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using the former result for Rg. Eq. 14 clearly proves that the low angle limit of the structure 
factor always yields both N and Rg if We will come back to this result later. 
 

3.2 The Debye function 
We have stated that the Gaussian distribution is a very good approximation for the real chain 
statistics. Then this yields  
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For the isotropic gaussian chain we find 
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This result can be used and Eq. 13 can be evaluated in the full q-range with  
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Here, the discrete sum has been already replaced by the continuous integral form (for N large 
enough, typically N > 80) which is the basis for all further calculations in this manuscript 
chapter on polymer scattering. It is the basic result for Gaussian chains. Its strength will be 
shown on selected examples, covering the most important fields of current polymer 
investigations. The statistical segment length per monomer lst is used in conjunction with the 
total number of monomers, m and l, given by N. This integral can be solved analytically. The 
form factor P(q) is defined as S1(q)/N and in discrete form is 
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For long chains (N → ∞), P(q) is called the Debye function gD(x) with 
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and the argument x= (qRg)2. A SANS experiment with fit to the Debye function is presented 
in Fig. 3 in a linear scale and in the form of a 2nd moment Kratky representation achieved 
when gD(x) is multiplied by q2. The Kratky representation emphasises the high q-regime. For 
Gaussian chains with an asymptotic q-2

 behaviour the high q regime then assumes a plateau. 
As shown the data are in perfect agreement with the Gaussian chain results derived above. 
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Small and high q regimes can also be explicitly obtained from expanding Eq. 19 for . 
For small q, we then have  . Reversely, this is the 
Taylor equivalent of exp(-x), which can be conveniently plotted in either the Guinier 
representation ln(gD) vs q2 from which then the slope contains Rg, or in a Zimm plot i.e. the 
inverse structure factor 1/S(q) vs. q2. The disadvantage of the latter is that slope and intercept 
in the linearized form are coupled whereas they are independent in the logarithmic way. The 
low q expansion allows a fast determination of Rg . An ultra-fast single-point estimate of the 
chain dimension can be obtained as follows: for q* = 1/Rg it can be easily obtained then that 
the scattering intensity at q* has dropped to 2/3 of the forward scattering value at q=0.  

0→x
...3/11...3/11)( 22 +−=+−≈ gD Rqxxg

Thus, in the low q regime we obtain direct information on the chain molecular weight Mw (via 
N) and the radius of gyration Rg. For high q, Eq. 19 on the other hand gives  
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Fig. 3: Experimental scattering data, normalized to S(q) on a poly-alkylene-oxide polymer, 
obtained at KWS2@FRM-2, Munich [15]. On the left, the Debye curve fits ideally, showing 
the Guinier region and the high q-dependence q-2. On the right, the Kratky region is 
highlighted.  
 
However, since data at high q, where the level of incoherent background (see D1) plays an 
important role, can be sensitively affected by erroneous subtraction, its use for the estimation 
of Rg is limited. 
 

4 Blend of linear Polymers 
4.1 Mixture of 2 polymers 
The above applied to a general system in which the contrast was given by a polymer vs. a 
background with zero scattering length. This is not what one wants to measure nor is it 
generally the case. The power of the neutron scattering approach is the use of the natural 
contrast between protonated and deuterated components, i.e. where a label is able to provide 
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the structure of a polymer chain in the phase which scattered before incoherently as from a 
single phase. The total structure factor in a dense system is obtained from Eq. 11 and split into 
an intra-chain and an inter-chain part.  

 + (21) )()1()()( 22 qRNMMqPMNqS −=

If we consider a mixture of 2 polymers with M chains, which are identical in length with N 
monomers and have no preferential interactions with each other, we define the form factor 
P(q) and the inter-chain structure factor R(q) which is sometimes even playing a dominating 
role. P(q) has been defined before and R(q) is formulated similarly with double sums:  
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With the incompressibility hypothesis one gets to  
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We have implicitly assumed that the hydrogenous and deuterated polymers are identical and 
therefore exhibit the same intra-chain P(q) and inter-chain structure factor R(q), independent 
of the isotopic labelling. The inter-chain contribution can be expressed in terms of the intra-
chain contributions which simplifies the scattering intensity to a rather simple expression 
in terms of a single chain contribution factor only. 
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4.2 Mixture of 2 polymers in a matrix or solvent 
The same reasoning as in the former blend can be done if it is mixed with a third component 
which may be e.g a small scale solvent, a macromolecule, particle or a complex environment. 
Latter can consist of e.g. a hard confinement or aggregated nanoparticles or soft network. 
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Working through the equations one gets to a similar expression as for the simple symmetric 
blend with the exception that additional freedom or contrast can be provided. The contrast 
situation has been treated in detail in the scattering section (C1) and we refer to that. Taking 
into account that the medium in which the blend is embedded in, has a non-zero scattering 
length b0, the blend can be mixed as to obey 

 (27) 
HD bxxbb )1(0 −+=

provided b0 takes a value between both constituent polymers with volume fractions x and 1-x. 
It can itself be a mixture of e.g. different solvent molecules that do not show a coherent 
structure on the length scale of the macromolecules itself or e.g. also a random co-polymer 
with matched scattering length length. The full coherent intensity becomes 
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where we have substituted the appropriate form factors already. Eq. 28 shows different 
possibilities which can be advantageous and which are applied in several approaches, at least 
qualitatively. We notice that the single chain form factor of the blend can still be measured if  

 

SAXS

SANS

 
Fig. 4: Experimental phase matching: the scattering for neutrons is almost extinguished 
whereas xrays show the phase structure, i.e a cylindrical polystyrene mesophase domain 
inside a sea of polyisoprene arms [unpublished, PhD Thesis A. Botti, Univ. of Münster,2001].  
 
the 2nd term is known or is matched out. The contrast matching can be achieved if the blend is 
compositionally mixed so that the contrast factor is zero. The scattering length of the 3rd 
component or medium b0 itself can be an effective one if e.g. solvent molecules are used 
which can be adjusted as to cope with the composition. Eq. 28 has another consequence: if  
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both polymers have the same scattering length, the 1st term vanishes and the intensity is given 
by the contrast with the medium. The 2nd term simulates a system in which all components  
have the same scattering length <b> and thus concentration fluctuations of the polymer 
become visible. This is the situation which is present if the probe is not neutrons but xrays. 
Likewise, the first term also disappears if the mixture consists of only 1 single type of 
polymer! Latter is the direct equivalent of the ray study. Now the phase in which the polymer 
is can be studied. STOT corresponds then to e.g. the nanocomposite structure or the network-
like environment. An example is given in Fig. 4. We note that, still using the same 
incompressibility rules, Eq. 28 can be re-casted such that then the 3 different diagonal 
structure factors, i.e SHH, SDD and STOT occur. 
  

4.3 The dilute solution 
To be complete we mention only the case of dilute polymer solutions. For low concentrations 
of labelled species in one of the components, Zimm has proposed an effective single contact 
model. If 2 monomers on closeby chains interact, their coordinates can be distributed in the 
interchain structure factor like 
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The middle term is the excluded volume between both polymer chains.. If this is substituted 
in R(q) and terms are reorganized, Zimm derived that  
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A2 is the 2nd virial coefficient. The famous Zimm equation follows : 
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We will not go into details in the use of this equation which was significantly used in the last 
decades for the determination of polymer chain structure and polymer-solvent interactions 
and we refer to some specialized literature. For blends its use has been marginal and for these 
the high concentration method is more favoured. It can be seen from the functional form in 
Eq. 31 that the single chain information can be extracted from extrapolation to c=0 whereas 
the 2nd virial coefficient can be derived involving the extrapolation of P(q) to P(q=0) where 
this is by definition =1. 
 

4.4 Mixture of 2 polymers with interaction 
In the former 2-component mixture, polymers behaved ideal, did not interact much and 
especially were symmetric. For asymmetric systems, one obtains the result in Eq. 32 which is 
identical to that obtained from a complicated random phase approximation (RPA) by Leibler 
[12] which applies to a general mixture of 2 asymmetrical polymers that differ only in their 
isotopic labelling and possibly interact. In the classical approach the Flory-Huggins 
interaction parameter is therefore set to 0=χ . We get 
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The index 0 now means that we deal only with the bare correlation functions assuming no 
interaction between the chains and is not to be mixed up with S(q). S0HH (and S0DD similarly) 
is defined as φNHgD(NH). φ is the respective volume fraction in the mixture. The χ parameter 
is strongly temperature dependent. For a mixture of 2 polymers, by incompressibility the 
cross term S0HD is zero. In the random phase approximation the chains are nearly ideal and 
perform random walks. The full RPA treatment (Eq. 33) and the consequences becomes clear 
if the mixture is replaced by e.g. a tri-block copolymer. It can be shown by exercise that the 
simple mixture can be retrieved by substituting the appropriate function into the partial 
structure factors. The RPA approximation thus effectively accounts for the role of the inter-
chain contributions.  
 

5 Tri-block copolymers: an example for RPA 
 
The random phase approximation (RPA) can be used for interacting systems and was 
originally developed by P.G. De Gennes. If different chemistries come together, also different 
interactions can be expected and therefore phase separating mechanisms can get active. Even 
the exchange between H and D can be sufficient. Since scattering is just sensitive to 
fluctuations in the composition, it is therefore very often used to study phase diagrams. Let us 
consider here the scattering of a symmetrical tri-block copolymer structure, consisting of 
identical monomers but differing only in their scattering length. We assume ideal mixing, thus 
negligible contributions from the Flory-Huggins parameter χ . We refer to the literature for 
more general treatments in isotopic block copolymers or even general block copolymers of 
different chemistries which then lead to micro-phase separation and meso-phases. They are 
discussed in the section on the SANS technique. The present example treats a HDH tri-block 
with a total of N monomers with NH resp ND monomers in the separate blocks of which the 
central block is deuterated. Then the problem reduces to the calculation of the partial structure 
factors which is done similar as we did to obtain the Debye function gD. 
These are fed into the general RPA equation, Eq. 33 which can re-organized to highlight the 
different contributions 

 

(33) 

We here explicitly assumed no interactions and near-ideal Gaussian chains. f is the fraction of 
the ith monomer type in the tri-block, f=Ni/N and Ni is the number of segments in the block. 
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Performing the calculations leads to new correlations which are absent for a mixture of simple 
linear polymers by adjusting the limits of the integration: 
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Here, RgD resp RgH are defined as f Rg resp 2/)1( f−  Rg in view of the gaussian character 
(remember the N-dependence of the end-to-end distance!). It can be easily seen that the RPA 
for the tri-block can be simplified back to the limiting case of a linear chain without labeled 
wings by letting the wings 0. Also, the RPA of the tri-block can be easily converted and 
transformed to the case of a general di-block copolymer by dropping the non-bonded H…H 
correlation term. 
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Fig. 5: Computational example for a tri-block scattering with Rg~90Å (left) and on the right 
an experimental system obtained at KWS1@FRJ2, Jülich with fits to 3 different tri-blocks 
differing only in the middle block length in reduced representation using Rg of the center 
block [13]. Reprinted with permission from Macromolecules, 34, 2186(2001). Copyright 
(2001) American Chemical Society. 
 
Eq. 33 nicely illustrates that the scattering is dominated by 1 block. As an example we choose 
the D block. For an isolated polymer with the length ND one expects a Debye-like curve. 
However, the 2nd term in eq 33 contains the correction to this due to the connectivity of this 
block now into a tri-block. The connectivity leads to the subtraction of the 2nd term and leads 
to a pronounced peak in the scattering intensity. The peak intensity and position is determined 
by the center block and the interaction parameter χ  (if any) leading to stronger peaks close to 
(micro-)phase separation. This is the correlation hole effect. At q=0 there are no composition 
fluctuations as on this length scale the same fluctuations as inside the molecules occur. For 
intermediate q the largest fluctuations occur around q~1/Rg of a branch and for even larger q 
there is no difference between a blend of unconnected blocks and the block copolymer. The 
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dependence is again that of the random walk. If this tri-block is mixed with a linear chain 
which has the scattering length in common with one of the blocks, the respective 
contributions are weighed with the volume fraction in the blend and added to the respective 
partial structure factors. This leads to new composition fluctuations at low q. In the original 
work by Leibler it is even shown that due to sometimes just polydispersity in the block 
copolymer, be it in the total length, or in the block length or composition, also a non-zero 
intensity is expected. Using the special anionic polymerization technique which guarantees 
very narrow molecular weight distributions and low polydispersities well below 1.1, this can 
be very well avoided as shown in the example from our lab (Fig. 5) and the analysis is a 
strong measure of quality of the synthetic efforts.  
 

6 Branched Chains 
6.1 The branching parameter g  
There are many different architectures in branched chains. A summary of the most prominent 
ones which can be synthesized by the mentioned method of anionic polymerization as model 
systems are shown in Fig. 1. There, e.g a star-branched chain consists of a core and arms of a 
more or less similar length. Therewith, a two-arm star polymer is essentially a linear polymer. 
A comb polymer, on the other hand, consists of a linear-chain backbone and many combs or 
teeth that stick out from functional groups distributed somehow along the backbone. These 
junctions or main-chain branching points may be uniformly or randomly spaced. The comb 
length can be highly uniform depending on the synthesis route. Comb polymers with uniform 
distribution of branching points and a uniform distribution of branching length can be made 
with special techniques and low yields only. Branched chains where branching points are 
distributed randomly, are much more common, however. Branches may have also further 
branches, leading to higher generations. Then the longest chain i.e. the backbone in the 
random-branched chain with the span molecular weight, can hardly be distinguished anymore. 
The length of the branches divides these systems then in long-chain branched and short-chain 
branched polymers. Long-chain branching reactions can be induced already in special chain-
reaction polymerization methods. If the frequency of branching is high, then the chain 
becomes hyper-branched. This is another class. E.g in a dendrimer shown in Fig. 1, every 
repeating unit is trifunctional. Starting at the center, the number of segments or branches in a 
layer or generation increases by a factor of 2 in the next generation. 
The best quantity to characterize the overall dimension of a branched chain is through the 
radius of gyration, Rg. An end-to-end distance cannot be uniquely identified anymore for non-
linear chains and instead, a branching parameter g is defined as  

 
(35) 2
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where Rgb
2 now is the mean squared radius of gyration for the branched chain, and Rgl

2 is the 
mean square radius of gyration for the linear chain. The ratio is calculated for the two 
polymers of the same molecular weight. It can be easily seen in Fig. 1 that branching 
concentrates monomers around the center of mass. Therefore, 1≤g  always. As an example 
we calculate here g for an nA-arm star polymer. With some more efforts and approximations 
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the branching factor of more complex architectures can be obtained similarly. We assume that 
each arm behaves as an ideal chain and has the same number of monomers, N1 (N1 »). Let ijr  
be the position of the jth monomer (j :0…Nl) on the ith arm (i:1…nA), as illustrated in Fig. 6. 
With Eq. 5, the mean-squared radius of gyration Rgb

2 is expressed as 
 

(36) 
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Fig. 6: Definitions of coordinates for a symmetric 4-armed star polymer  
 
The mean squared monomer distance is calculated for monomers on the same arm and those 
on different arms separately. For large enough N we obtain 

 
(37) 

Again, to prove the consistency the limiting case of the linear polymer is well suited. Linear 
polymers can be looked at as 2-arm stars or even as 1-arm star objects. As one can easily 
verify, the known relation for Rg coming from the FJC model is obtained. Thus, with this the 
branching parameter g is a nice descriptor for branching. 
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6.2 Form factor of a symmetric star polymer 
We can now calculate the form factor Pstar(q) for this nA-arm star polymer with this uniform 
arm length N1. When calculating the average of exp( )( nm rrqi − ), it is again necessary to 
distinguish between the two cases for rm and rn i.e. both on the same arm and both being on 
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different arms. The former case takes place with a probability of 1/nA and obviously (1-1/nA) 
for the other. Then, 
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where the subscripts 1 and 2 correspond to the two cases. The averages are taken with respect  
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Fig. 7: Star scattering: log-log and Kratky representation for stars with same number of 
monomers but varying functionality, going from 2 to 16. The results show clearly that for 
nA=16 the scattering starts to resemble that of spherical objects from the apparent q-4 
dependence below q=0.02Å-1 .  
 
to the two monomers over the length of the arm. The second average can be approximated 
after some manipulation to consist of the independent averages of single arms as 
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Combining all results leads to the form factor of a star polymer with nA arms and radius of 
gyration per arm Rg,l with Nl monomers 
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6.3 Form factor of a ring polymer 
Ring polymers are very interesting macromolecules in that they differ structurally and 
dynamically from the typical linear polymers due to the total absence of chain ends that are 
dominating for the dynamics in the melt. They have become of renewed interest in the last 
years due to the synthetic efforts in producing linear contaminant-free ring structures while 
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minimizing concatenation reactions. As Fig. 8 shows, there are 2 different ways to define the 
intra-chain correlation between two monomers i and j. Both ways are equally probable and 
the occurrence is taken into account by multiplying the probabilities of selecting each 
different path. For the mean-squared distance between 2 monomers and the corresponding 
form factor we obtain then in analogy with the linear chain and including the closure relation  
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The single chain structure factor differs in a sensitive way from the pure linear curve as can be 
seen in Fig. 8 . It leads to a peaked structure in the Kratky representation. This expresses the 
similarity of a ring polymer with a star or branched polymer (Fig. 7). The monomers of a ring 
are on average located at closer distance to the center of mass than in a linear chain, so an 
enhancement of the compacticity of the structure can be expected. The peak arises due to the 
increased correlation through the closed cycle and is therefore related to Rg of the ring. Latter 
can be calculated to be smaller than the linear by .2  
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Fig. 8: Ring scattering: 2 possible ways to define the distance rij. Kratky representation to 
highlight the difference in the structure due to ring closure. In the ring/linear mixture the 
peak shifts to lower q and indicates a swelling of the ring conformation by penetrating linear 
chains. Adapted from [14]. 

7 Summary 
We have discussed in a nut-shell various possibilities to investigate the structure of model 
polymeric chains in various environments and constitutions, some in more detail than others 
while keeping the focus on dense, amorphous and well-mixed systems. Mixtures of 
chemically different polymers behave much more complicated, are partly treated in other 
lectures and can be very well studied as well by the small angle xray scattering method. We 
have tried to summarize here only the most important concepts of the statistical structure of 
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ideally monodisperse chains and we have demonstrated how the particular structure affects 
the scattering behaviour. This text should be a basis in order to be of help in calculating more 
complex structures which are built up from the here discussed basic entities i.e the linear and 
the star polymer. It was a general aim thus to provide some useful basics which can be 
transferred to related sample systems. 

Appendix 
We had defined the macroscopic differential cross section )(q

d
d
Ω
Σ  per unit volume in [cm-1] 

as )(1 q
d
d

Vs Ω
σ . Here, Vs is the irradiated sample volume. In this context, another very often 

used parameter, i.e. the scattering length density (or SLD), ρ , can be defined which replaces 
the scattering length b. This SLD or ρ is defined as 0/Vb

i
i∑ with V0 a reference volume over 

which the scattering lengths b are summed up and normalized to its volume. For polymers, V0 
typically is the monomeric volume and for simple molecules or particles it can be the sum of 
all the constituents. With this the intensity becomes 
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With the relationship psp VVN // φ=  and Vp and φ being the polymer or particle molecular 
volume and volume fraction, this can be further simplified. An expression for SANS 
intensities which is often encountered, especially among experimentalists is then found as  

 (44) )()( 2 qPVqI p ρφ Δ=

Here, represents the contrast factor i.e. the squared difference between the scattering 
length densities of both components. 

2ρΔ
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