Pharmacokinetics and \textit{in vitro} and \textit{in vivo} correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs

Da-Feng Chua,b, Xue-Qi Fub, Wan-Hui Liua,c, Ke Liua,c, You-Xin Lia,b,*

a School of Pharmacy, Yantai University, No. 32 Qingquan Road, 264005 Yantai, Shandong Province, PR China
b College of Life Science, Jilin University, No. 2699 Qianjin Road, 130012 Changchun, Jilin Province, PR China
c Shandong Luye Pharmaceutical Co. Ltd., No. 9 Baoyuan Road, 264003 Yantai, Shandong Province, PR China

Received 8 March 2006; received in revised form 9 May 2006; accepted 22 June 2006
Available online 27 June 2006

Abstract

The purpose of this study was to investigate the pharmacokinetics and \textit{in vitro/in vivo} correlation (IVIVC) of huperzine A loaded poly(lactic-co-glycolic acid) (PLGA) microspheres in dogs. Several huperzine A loaded PLGA microspheres were prepared by an O/W method and three of them (single dose) were injected intramuscularly (i.m.) or subcutaneously (s.c.) to five beagle dogs, respectively. With the increase of the molecular weight of PLGA and the particle size of microspheres, the \textit{in vitro} and \textit{in vivo} release periods of huperzine A were prolonged. After s.c. injection, the release of huperzine A from microspheres was faster than that after i.m. injection. The IVIVC models of huperzine A loaded PLGA microspheres were established successfully and after i.m. administration the linear relationship between the \textit{in vitro} and the \textit{in vivo} releases was better than that after s.c. administration. It was also found when the particle size of the microspheres was smaller, the values of correlation coefficient were higher.

\textcopyright 2006 Elsevier B.V. All rights reserved.

Keywords: Poly(lactic-co-glycolic acid); Microspheres; Huperzine A; Pharmacokinetics; \textit{In vitro/in vivo} correlation

1. Introduction

Huperzine A, a lycopodium alkaloid isolated from the Chinese medicinal herb Huperzia serrata, is a reversible, potent, and selective inhibitor of acetylcholinesterase. Compared with other well-known acetylcholinesterase inhibitors, such as physostigmine, galanthamine, tacrine, and even donepezil, which have been approved for Alzheimer’s disease (AD) in the United States and some European countries, huperzine A has better penetration through the blood-brain barrier, higher oral bioavailability, and longer duration of acetylcholinesterase inhibitory action (Tang and Han, 1999; Xiao et al., 1999; Zhu et al., 2004). In addition, huperzine A has antioxidant and neuroprotective properties, which suggests that it may be useful as a disease-modifying treatment for AD (Xiao et al., 1999; Wang et al., 2001; Zhang et al., 2002; Zhao and Li, 2002; Zhou and Tang, 2002). Currently, huperzine A is in phase II trials in the United States in elderly patients with age-associated memory loss. Results of clinical trials in China showed that huperzine A was efficient in treatment of patients with mild to moderate AD (Zhang et al., 2002).

Huperzine A is available currently in the market twice daily as tablet or capsule (200–400 μg/day) (Xu et al., 1995, 1997, 1999). Though this daily repeated oral administration is convenient for most of patients, it is very difficult for the advanced Alzheimer’s patients who suffer heavy memory disorder, not to miss scheduled self-medication. Gastrointestinal side effects have also been reported, such as, nausea and anorexia (Sun et al., 1999; Jiang et al., 2002). Therefore, long term and parenteral formulations of huperzine A, which could ensure the therapeutic effects and make the care easier for caregivers, have an increasing importance for the treatment of Alzheimer’s disease.

At present, many biodegradable poly(lactic-co-glycolic acid) PLGA depot products, especially microspheres or microparticles, containing various drugs become commercially available. Among these products, some were intended as intramuscular (i.m.) injection, such as Risperdal Consta (risperidone), Sandostatin LAR (octreotide acetate), Lupron depot (leuprolide acetate), Trelstar LA and Trelstar depot (triptorelin pamoate). Others were given as subcutaneous (s.c.) injection, for example,
Nutropin Depot (human growth hormone) and Zoladex (goserelin acetate). Though enormous studies on PLGA depot products were reported, the investigation on the differences of plasma concentration–time profiles of these products administrated via i.m. and s.c. routes has been rarely conducted.

While the FDA in vitro/in vivo correlation (IVIVC) guidance is applicable only to oral dosage forms, the principles of this guidance can be used to develop IVIVC for non-oral products. However, few examples were given where in vitro dissolution in PBS can accurately predict the in vivo release profile for parenteral biodegradable depot systems (Negrin et al., 2001; Schliecker et al., 2004; Van Dijkhuizen-Radersma et al., 2004; Woo et al., 2004). Therefore, ongoing research is necessary in developing in IVIVC for these types of products (Uppoor, 2001).

This paper described pharmacokinetics and IVIVC after i.m. and s.c. injections of the microsphere formulations consisting of huperzine A and several PLGA polymers in dogs.

2. Materials and methods

2.1. Materials

Poly(0,1-lactide-co-glycolide) RG502H (lactide/glycolide ratio, 50/50; M_n, 5400) and RG503H (lactide/glycolide ratio, 50/50; M_n, 12 500) were supplied by Boehringer Ingelheim AG (Ingelheim, Germany); Huperzine A was obtained from Joyline & Joysun Pharmaceutical Stock Co. Ltd. (Zhengzhou, China).

2.2. Preparation of huperzine a microspheres

Huperzine A loaded microspheres were prepared using a modified O/W method. Huperzine A (6.5%, w/w, drug/polymer) and PLGA polymer or mixtures of PLGA polymers (20%, w/v) were dissolved in 50 mL dichloromethane. The solution was injected into 5000 mL 0.5% PVA aqueous solution at 6 °C under homogenization at various rate for 1 min and then the microspheres were solidified under mild mechanical stirring at 150 rpm with the temperature increased from 6 to 25 °C in the first 2 h and kept at 25 °C for 4 h. The solidified microspheres were filtrated with a 10 µm sieve and washed by distilled water for three times and then freezing dried (−20 to 25 °C). After passing through a 154 µm sieve, the microspheres were stored at 8 °C.

2.3. Characterization of the microspheres

2.3.1. Particle size analysis

The particle size of the microspheres was determined using a laser particle size analyzer (LS230, Beckman Coulter Inc., Fullerton, CA, USA). Fifty milligrams of microspheres were suspended in 50 mL of distilled water and subjected to vortex mixing for 10 s before analysis.

2.3.2. Scanning electron microscopy (SEM)

Microspheres were fixed on aluminum studs and coated with gold using a sputter coater. The samples were sputter-coated three times (2 min) under vacuum (0.1 mmHg) at a current intensity of 20 mA. Morphology of microspheres was then studied by scanning electron microscopy (JSM-840, JEOL, Tokyo, Japan).

2.3.3. Determination of drug loading

Twenty milligrams of the microspheres was dissolved in 1 mL acetone in a 25 mL flask and 0.01 M HCl was added up to 25 mL under vigorous agitation. The precipitated polymer, in which no huperzine A was found, was removed by a 0.45 µm filter and the clear solution was used for analysis, which was carried out using HPLC connected with an UV detector in a mobile phase of the mixture of acetonitrile and 0.2% H₃PO₄ (25:75); flow rate, 0.7 mL/min; wavelength, 306 nm; column, ODS C₁₈ (250 mm × 4.6 mm i.d., 5 µm particle size); injection volume, 20 µL. The drug loading was then determined and the encapsulation efficiency were calculated using the following equation: Encapsulation efficiency (%) = 100 × drug loading/theoretical drug loading.

2.4. In vitro release

Five milligrams of microspheres was suspended in 3 mL of 0.01 M phosphate buffered saline (PBS), pH 7.4, containing 0.01% Tween 80, 0.05% sodium azide and 0.04 M sodium chloride in a 5 mL plastic vial (n = 3), and then the suspension was placed in a shaking bath (HJS-H, DongLian Electronic Co., Harbin, China) at 40 rpm and 37 °C. Sink conditions were maintained during this study. At preset intervals, the vials were centrifuged at 3000 × g for 30 min and then 2 mL of the supernatant was drawn and replaced by fresh buffer. Huperzine A in supernatant was determined by HPLC method described above.

2.5. In vivo study

2.5.1. Animals

Animal experiments were conducted according to protocols approved by the Animal Care and Use Committee of Shandong Engineering Research Center of Natural Drug. Five beagle dogs (male and female, 10.5 ± 0.4 kg), purchased from Kejin Laboratory Animal Co. Ltd. (Nanhai, Guangdong, china), were used in intravenous (i.v.), i.m. and s.c. administrations. During the whole study, uniform feed and free water were supplied. The process of blood sampling had a 2- or 4-week washout and recovery period.

2.5.2. Drugs

Huperzine A solution (100 µg/mL) was prepared by dissolving huperzine A in 0.9% NaCl. Huperzine A loaded microspheres suspension (850 µg huperzine A/mL) was prepared by dispersing the huperzine A loaded microspheres in sterile water containing 1.5% carboxymethylcellulose sodium and 0.9% NaCl. The doses of the administrated huperzine A were designed according to the dose conversion factors based on body surface area between dog and human. The formula is that dose of µg/kg in dogs per day = dose of µg/kg in humans per day × 1.8 (FDA, 2002).
2.5.3. Dosing and sample collection

2.5.3.1. i.v. administration of huperzine A solution. Five beagle dogs were injected i.v. with a single dose of huperzine A (10 μg/kg). Blood samples (3 mL) were collected into heparinized tubes before and at 0.08, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, and 24 h after drug administration. Plasma was separated by centrifugation for 10 min at 3000 × g and stored at −20°C until analysis.

2.5.3.2. i.m. and s.c. administrations of huperzine A loaded microspheres. Five beagle dogs were injected i.m. or s.c. with a single dose of huperzine A loaded microspheres suspension at dose of 170 μg/kg. Blood samples were similarly collected at 0.5, 1, 2, 3, 6, 8 h, 1–15 days after drug administration. Plasma was separated by centrifugation for 10 min at 3000 × g and stored at −20°C until analysis. Huperzine A was analyzed using LC–MS/MS, according to the previous method (Wang et al., 2004).

2.5.4. Pharmacokinetic analysis

The terminal elimination rate constants (Kₑ) after i.v. administration were estimated with least-squares regression of values in the terminal log-linear region of plasma concentration–time curves at the time points above. The terminal elimination half-life (T½) was calculated as 0.693/Kₑ. The areas under the curve from time zero to last sampling time (AUC₀−ₜ) after drug administration were determined by the linear trapezoidal rule. The area under the curve from time zero to infinity (AUC₀−∞) was calculated as AUC₀−ₜ + Cᵣ/Kₑ, where Cᵣ is the last detectable plasma concentration and t is the time at which this concentration occurred. The mean plasma concentration–time data after i.v. administration of the huperzine A solution was used to obtain the best fitted compartmental model by Drug and Statistics (DAS) version 2.0 (Anhui Provincial Center for Drug Clinical Evaluation, China) program. Model-dependent pharmacokinetic parameters of K₁₀, K₁₂ and K₂₁ were also obtained. All data were expressed as mean ± standard deviation (S.D.).

2.6. IVIVC

The data generated in the pharmacokinetic study were used to develop the IVIVC (Level A). The relationship between percent in vitro dissolution in PBS at 37°C and the fraction of drug absorbed in vivo (Fᵢ) was examined. The Fᵢ was determined using the Wagner–Nelson method (WN) by the following equation:

\[Fᵢ = (Cᵣ/Kₑ + AUC₀−ₜ)/AUC₀−∞ \]

(Wagner and Nelson, 1963) and the Loo–Riegelman method (LR) by the following equation:

\[Fᵢ = [Cᵣ/Kₑ + AUC₀−ₜ + (Xₚ)/(V_c × K₁₀)]/AUC₀−∞ \]

(Loo and Riegelman, 1968). The relationship between percent in vitro dissolution in PBS at 37°C and percent AUC (AUC₀−₁/AUC₀−∞) was also examined. Linear regression analysis was applied to the IVIVC plots. The values of correlation coefficient (R²), slope and intercept were calculated, respectively.

3. Results

3.1. Characterization of the microspheres

Formulations A–G in Table 1 represented the huperzine A loaded microspheres prepared with various PLGA or homogenization speeds. The characterizations of the microspheres showed that the encapsulation efficiency of huperzine A was influenced significantly by the molecular weight of PLGA and was increased from 24.4% in the case of 503H to 64.2% of 502H. This indicated that an increased content of the carboxylic terminal group of PLGA polymers due to a reduction of the molecular weight could improve the encapsulation of huperzine A which had a primary amino group (Gao et al., 2006). When the homogenization speed was reduced from 2000 to 1000 rpm in the case of the preparation of the microspheres using a mixture of PLGA (502H/503H, 1/1), the encapsulation efficiency and the mean particle size were increased from 38.4 to 45.3% and from 12.7 to 72.3 μm, respectively. Formulation F was obtained by the same preparation method as formulation E except that the concentration of PLGA in dichloromethane was 25% (w/v). Compared with formulation E, formulation F had an about 1.5 times larger particle size, but only displayed a slightly higher encapsulation efficiency. SEM analysis showed a spherical, non-porous and solid morphology of the microspheres. The in vitro releases of huperzine A from all microspheres in PBS of pH 7.4 at 37°C were shown in Fig. 1. The release rates were reduced by the increases of the molecular weight of PLGA and of the particle size.

3.2. Pharmacokinetic study

The mean plasma concentration–time curve of huperzine A after single i.v. administration of the huperzine A solution at the dose of 10 μg/kg in dogs was shown in Fig. 2. Huperzine

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of huperzine A loaded microspheres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation</th>
<th>PLGA</th>
<th>Mn (GPC)</th>
<th>Homogenization speed (rpm)</th>
<th>Encapsulation efficiency (%)</th>
<th>Particle size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>502H</td>
<td>5400</td>
<td>1000</td>
<td>64.2</td>
<td>51.6</td>
</tr>
<tr>
<td>B</td>
<td>502H/503H (1/1)</td>
<td>8200</td>
<td>2000</td>
<td>38.4</td>
<td>12.7</td>
</tr>
<tr>
<td>C</td>
<td>502H/503H (1/1)</td>
<td>8200</td>
<td>1500</td>
<td>41.1</td>
<td>35.8</td>
</tr>
<tr>
<td>D</td>
<td>502H/503H (1/1)</td>
<td>8200</td>
<td>1200</td>
<td>43.9</td>
<td>55.1</td>
</tr>
<tr>
<td>E</td>
<td>502H/503H (1/1)</td>
<td>8200</td>
<td>1000</td>
<td>45.3</td>
<td>72.3</td>
</tr>
<tr>
<td>F</td>
<td>502H/503H (1/1)</td>
<td>8200</td>
<td>1000</td>
<td>47.4</td>
<td>113.2</td>
</tr>
<tr>
<td>G</td>
<td>503H</td>
<td>12500</td>
<td>1000</td>
<td>24.4</td>
<td>80.2</td>
</tr>
</tbody>
</table>

* Concentration of PLGA in dichloromethane was 25% (w/v).
A was rapidly eliminated with the K_e of 0.14 ± 0.01/h and the $T_{1/2}$ of 5.12 ± 0.31 h and well fitted to a two-compartment model ($1/c_2$) with the K_{10}, K_{12} and K_{21} of 0.35 ± 0.07, 0.81 ± 0.81 and 0.40 ± 0.26/h, respectively.

The mean plasma concentration–time curves of huperzine A following i.m. and s.c. injections of microspheres E at the dose of 170 μg/kg in dogs were shown in Fig. 3a.

After low initial bursts, the PLGA microspheres sustained the releases of huperzine A within 12–13 days. The mean cumulative releases calculated by the methods mentioned above showed that 3.7–5.8% of huperzine A following i.m. administration or 3.5–7.3% of huperzine A following s.c. administration was delivered within 24 h, respectively. In the case of s.c. administration, the plasma concentration of huperzine A reached the C_{max} of 2.5 ± 0.9 ng/mL at day 4 for formulation A and 2.0 ± 0.7 ng/mL at day 3 for formulation F, respectively. And then the plasma concentration slowly fell until the drug was exhausted at day 11 with the AUC$_{0-\infty}$ of 248.1 ± 18.2 ng h/mL for formulation A and at day 15 with the AUC$_{0-\infty}$ of 256.9 ± 23.4 ng h/mL for formulation F, respectively.

IVIVC

The data generated in the pharmacokinetic study after the i.v. administration of the huperzine A solution at the dose of 10 μg/kg and after the i.m. administrations of the microsphere formulations A, E and F at the dose of 170 μg/kg to dogs were used to develop the IVIVC. The Wagner–Nelson procedure and the Loo–Riegelman method with the linear trapezoidal rule were used to obtain an in vivo cumulative release profiles. The relationship between percent in vitro dissolution of and percent AUC$_{0-\infty}$ of the huperzine A loaded microspheres was also established.

The in vitro and in vivo cumulative release profiles and percent AUC$_{0-\infty}$ of the huperzine A loaded microspheres were shown in Fig. 4. The percent drug absorbed and percent AUC$_{0-\infty}$ versus the amount of drug released in vitro plots were shown in Fig. 5. Table 2 showed a good linear regression relationship between the percent in vitro dissolution in PBS at 37°C and the percent absorption ($R^2 = 0.974–0.990$,
Fig. 4. In vitro releases in PBS at 37 °C and in vivo cumulative releases using the Wagner–Nelson and Loo–Riegelman methods and percent AUC of huperzine A in dogs from PLGA microspheres (a) A, i.m., (b) E, i.m., (c) E, s.c. and (d) F, i.m.

Fig. 5. IVIVC model linear regression plots of cumulative absorption and percent AUC vs. percent dissolution of huperzine A from PLGA microspheres (a) A, i.m., (b) E, i.m., (c) E, s.c. and (d) F, i.m.
that in hypodermia, but an unusual result was obtained from the experiments: C_{max} after s.c. injection of the huperzine A loaded microspheres was higher than that after i.m. injection. Huperzine A can penetrate easily the biologic membrane (Tang and Han, 1999). Therefore, the rate-limited release of huperzine A from the microspheres in the injection sites would be a dominant factor resulting in the pharmacokinetic differences. Drug release from biodegradable delivery systems of PLGA polymer occurs by a combined mechanism of drug diffusion and polymer degradation or erosion (Furr and Hutchinson, 1992; Shah et al., 1992). It had been concluded that the site of administration had an effect on the degradation rate of PLGA microspheres, and the microspheres at the s.c. site degraded faster than that at the i.m. site (Sandor et al., 2002). PLGA microspheres administrated i.m. had a lower level of cellular infiltration than that of the microspheres administrated in the s.c. site (Sandor et al., 2002). Action of macrophages can help to contribute a surface erosion effect to the normally bulk-eroding polymer. Alternatively, macrophages can produce an acidic microenvironment in the vicinity of the polymer to be digested. This might create an acid-catalyzed degradation effect with the oligomers produced being quickly phagocytosed (Huffman and Casey, 1985; Gogolewski et al., 1993). These indicated that the mass loss for PLGA microspheres administrated i.m. was mainly due to the hydrolytic degradation and the decrease in molecular weight, which was similar to the typical in vitro situation, whereas for the microspheres administrated s.c., due to more enzymatic, macrophages and other cellular activity within the surrounding tissue, increased erosion existed (Sandor et al., 2002).

For formulation A, due to the lower molecular weight of PLGA, the in vivo release of huperzine A was faster than that of formulation E, which agreed with their in vitro releases. Larger mean particle size of formulation F resulted in a slower in vivo release of huperzine A than that of formulation E with smaller mean particle size, which was also similar to the results of the in vitro dissolution assays.

Although an IVIVC can be defined with a minimum of two formulations with different release rates, three or more formulations with different release rates are recommended (FDA, 1997). In this study, formulation E and other two formulations A and F with relative higher encapsulation efficiency and different release rates were used to establish the IVIVC of huperzine A loaded microspheres in dogs. Huperzine A can penetrate easily the biologic membrane, which resulted in a rapid absorption of huperzine A in vivo. For a rapid absorption process of drug, it is appropriate to use the Wagner–Nelson procedure or the Loo–Riegelman method for obtaining an absorption profile (Hwang et al., 1993), because the difference between the cumulative amount released and the cumulative amount absorbed, i.e. the amount of drug released from the dosage form but not yet absorbed, could be negligible. The Loo–Riegelman method is used usually in the calculation of the cumulative absorption of the drug which is fitted to a two-compartment model. Though the Wagner–Nelson method is mainly applied to the pharmacokinetic study of the drug fitted to a one-compartment model, due to its simplicity, this method is also used for the drugs fitted to a two-compartment model (Schliecker et al., 2004).
study, a similar IVIVC indicated that for the IVIVC analysis of huperzine A loaded microspheres, these two methods could be used alternatively.

The Wagner–Nelson and Loo–Riegelman methods as well as numerical deconvolution are recommended by FDA to calculate the absorption profile (FDA, 1997). When these procedures were used to acquire the IVIVC, pharmacokinetic parameters from drug immediate release formulation is necessary. Percent AUC has been used in IVIVC analysis of microsphere formulation without using parameters from immediate release formulation (Woo et al., 2004). In this study, though no parameters were lacked, to further estimate IVIVC by percent AUCD∞−∞, it was tried to use percent AUC to establish IVIVC of the sustained release formulations of huperzine A and a successful IVIVC was obtained.

Because the in vivo degradation of PLGA was faster than that in vitro due to the foreign body response (Spelkehauer et al., 1989; Tracy et al., 1999), when the release of drug was mainly controlled by the degradation of the polymer matrix, the in vitro releases of PLGA-based release systems in PBS were slower than those in vivo (Soriano et al., 1996; Machida et al., 2000; Jiang et al., 2003). While for diffusion-controlled sustained-release systems, the release of drug depended more on the permeability of the polymeric matrix and was contributed less by the degradation of the polymer. In this case, a proper IVIVC can be found (Van Dijkhuizen-Radersma et al., 2004).

Since huperzine A is a small molecule alkaloid, its release from the microspheres was contributed mainly by the dissolution and diffusion of huperzine A in the swollen microspheres. As a result, though there was a longer erosion period of the PLGA used (4–6 weeks), the diffusion-controlled release of huperzine A from the swollen PLGA matrix was sustained within two weeks. Also, huperzine A was absorbed rapidly, which resulted that the in vivo absorption profile was a good approximation of the release profile of huperzine A from microspheres. Therefore, the good IVIVC of huperzine A loaded PLGA microspheres was obtained and could be explained by the diffusion-controlled sustained-release of huperzine A from PLGA microspheres combined with a rapid in vivo absorption of huperzine A.

Via the same route of i.m. administration, the values of R^2 of the formulation E were higher than these of formulation F. The formulation F had a larger particle size than that of formulation E, which slowed the diffusion of huperzine A from microspheres and increased the effect of PLGA degradation on the release of huperzine A. Based on the faster in vivo degradation of PLGA matrix, the larger particle size of formulation F increased the difference between the in vitro and in vivo releases. All of the values of R^2 of formulation A were higher than these of formulation E. An IVIVC after i.m. injection of huperzine A loaded PLGA (lactide/glycolide ratio, 75/25; M_n, 15 000) microspheres to rats (Fu et al., 2005) was also reported with a R^2 of 0.98, which was lower than those in this study. The reason should be similar, a higher molecular weight and ratio of lactide/glycolide of the PLGA slowed the diffusion of huperzine A and increased the effect of polymer degradation on the release of huperzine A. In the case of the formulation E, when it was i.m. injected, the values of R^2 were higher than that when it was s.c. injected. This agreed with that described above; the physiological factors in hypodermia accelerated the degradation of PLGA matrix, which led to a decreased R^2 after the s.c. administration.

5. Conclusion

Huperzine A loaded PLGA microspheres were successfully prepared using an O/W method. With the increase of the PLGA molecular weight and the particle size, the in vitro and in vivo release periods of huperzine A were prolonged. The release of huperzine A from microspheres following s.c. injection was faster than that following i.m. injection due to an accelerated degradation of PLGA in hypodermia. Since huperzine A was diffusion-controlled released from the polymeric matrix and was absorbed in vivo rapidly, a good linear regression relationship was observed between the percent in vitro dissolution in PBS at 37 °C and the percent absorption or percent AUC. Larger particle size slowed the diffusion of huperzine A from microspheres and increased the effect of PLGA degradation on the release of huperzine A, which led to the lower values of R^2 than these of the smaller microspheres. Because physiological factors affected the degradation of PLGA matrix in hypodermia more than that in musculature, the values of R^2 after i.m. administration were higher than these after s.c. administration.

Acknowledgement

This work was supported in part by Yantai University (grants YX05Z11).

References

