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ABSTRACT: The determination of the solubility parameter of organic compounds has been of much significance in the chemical
industry. In this study, we propose a predictive method based on the combination of the Group Contribution strategy
with the Artificial Neural Network to calculate/estimate the solubility parameter values of about 1620 nonelectrolyte organic
compounds at 298.15 K and atmospheric pressure. The chemical functional groups are obtained for various compounds categorized
in 81 different chemical families. The final results indicate the following statistical parameters of the presented method: average
relative deviation (ARD %) of the determined properties from existing experimental values of 1.5% and a squared correlation
coefficient of 0.985. It is finally inferred that the developed model is more accurate and predictive than our previously proposed
models based on the Quantitative Structure�Property Relationship algorithm, which yielded 4.6, 3.4, and 3.1 ARD % from
experimental values.

1. INTRODUCTION

Application of the solubility parameter concept in different
chemical processes has been investigated since 1930s, when
Scatchard1 defined a physicochemical parameter standing for a
solvent's affinity to dissolve a particular solute.2 Hildebrand and
Scott,3 and Hansen4,5 were the next researchers who improved
the definition of the solubility parameter along with its various
applications. So far, it has been demonstrated that the solubility
parameter can be employed as a prominent property of a
compound not only in coating and paint technologies, complex
extraction operations, and polymer processes, and so forth2,6

but also in many of the developed thermodynamic models for
prediction of the amounts/conditions of precipitations/
depositions of heavy petroleum fractions such as asphaltene
and wax. Many of these models have been generally developed
based on the regular solution theory,7 which is based on the
difference between the solubility parameter of the solute
(asphaltene/wax) and related solvent (maltene/oil).8�17

Generally, the solubility parameter can be evaluated by the
following equation:1�5

δ ¼ ΔEv
v

� �1=2

¼ ΔUvap

v

� �1=2

¼ ΔHvap � RT

v

� �1=2

ð1Þ

where δ stands for the Hildebrand one-component solubility
parameter,ΔEv represents the cohesive energy, which is introduced
as the energy required for separating amolecule from its surrounded
neighbors,1�5 v is the molar volume, ΔUvap denotes the energy
change upon isothermal vaporization of the saturated liquid to the
ideal-gas state (energy of a complete vaporization),17 and ΔHvap is
the enthalpy of vaporization. Internal pressure can also be applied

for defining the physical meaning of the solubility parameter as
follows:1,18

Pi ¼ T
∂P
∂T

� �
v

� P ¼ δ2 ð2Þ

where Pi stands for the internal pressure and T is temperature.
The interactions between the solvents and the solutes, origi-

nated from their electron pairs, donor�acceptors, and hydrogen
bonding interactions, are not considered in the preceding
equations. In other words, the aforementioned Hildebrand’s
parameter does not account for these interactions and considers
only one part of the molecular forces (dispersion).1,6 Conse-
quently, the concept of the Hildebrand solubility parameter is
normally applied for systems including weakly interacting spe-
cies. As a result, Hildebrand’s theory was modified by several
researchers, from various fields, to define the two-component
solubility parameter as follows:19�25

δ ¼ ðδλ2 þ δτ
2Þ1=2 ð3Þ

where subscripts λ and τ denote nonpolar and polar solubility
parameters, respectively.

As a very fruitful modification, Hansen5 proposed the three-
component (Hansen) solubility parameter considering the ef-
fects of all of the cohesive bonds including the atomic dispersion
forces, the molecular permanent dipole-permanent dipole forces,
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and the molecular hydrogen-bonding on the solubility parameter
value as follows:1,2,17

δHSP ¼ ðδD2 þ δP
2 þ δH

2Þ1=2 ð4Þ

where the subscripts D, P, and H denote the dispersion, polar,
and hydrogen-bonding effects, respectively, and the subscript
HSP denotes the total Hansen solubility parameter. The values of
one-component and the total three-component solubility para-
meters would be almost the same for the substances with
nonpolar, and non-hydrogen-bonding effects such as the light
hydrocarbons.

The determination of the solubility parameter has been
therefore of critical importance for the industry.1�39 A detailed
review of the corresponding methods for its evaluation can be
found elsewhere.17 This work is a continuation of the series of
our efforts to develop predictive tools for the determination of
the physicochemical properties of nonelectrolyte organic com-
pounds using different approaches. In a previous communica-
tion,17 our group presented three reliable models based on
Quantitative Structure�Property Relationship (QSPR) to repre-
sent/predict the one-component solubility parameter of none-
lectrolyte organic compounds reported in the DIPPR 801
database.40 The results showed that the later models were reliable
and comprehensive although developing such molecular-based
models may not contain easy computational procedure. In this
work, a new approach based on the combination of the Group
Contribution (GC) method with Artificial Neural Network
(ANN) is presented for this purpose. One of the main char-
acteristics of the GC method is that this algorithm divides a
molecule into small parts (generally named as “segments”). Each
of these segments is considered as a functional group and has a
contribution to the physicochemical properties of the specified
molecule. Finally, the value of the property is defined through
calculating the summation of the contributions of all functional
groups in a molecule.

Furthermore, the Artificial Neural Networks have been applied
to various scientific and engineering applications,41�82 for example,
calculations/estimations of the physical properties of different pure
compounds41�45 and phase behavior predictions of complex semi-
clathrate hydrate systems.60 The theoretical explanations about
Neural Networks have been well-established elsewhere.83 As a
consequence, a combination of the GC and the ANN methods
normally leads to obtain accurate predictive tools for the evaluation
of the desired properties of organic compounds.However, ANN is a
mathematical tool that users must be very careful to apply its
consequent results within the frame of the hypotheses and within
the field of the data that allowed determination of the parameters
(any extrapolation may not be recommended).

2. EXPERIMENTAL DATA AND MATHEMATICAL
METHODS

2.1. Experimental Data. In this study, we have used the DIPPR
801 database,40 which is one of the most reliable sources of physical
property data for pure compounds, based on more than 23000
scientific sources. The solubility parameter values of 1620 none-
lectrolyte organic species from various chemical families (81
families) at 298.15 K and atmospheric pressure have been treated
for the calculation procedure. All of the data points have been
evaluated by the DIPPR 801 project40 for the investigated
compounds.

2.2. Determination of New Functional Groups. Having
defined the database, the chemical structures of all of the studied
compounds have been analyzed in great detail using an algorithm
comparing the chemical groups to define the most efficient
contributions for evaluation of the solubility parameter. As a
result, a new collection of 176 functional groups have been found
to be more efficient for the representation/prediction of the
corresponding parameter. These functional groups are more
general than those of first-order, second-order, or third-order
groups used in conventional group contribution methods. The
functional groups used in this study are presented as Supporting
Information. Moreover, the table of their numbers of occur-
rences in the investigated compounds is presented as Supporting
Information.
2.3. Optimization of Group Contributions.The first calcula-

tion step is to find a relationship between the chemical functional
groups and the desired physical property.41�82 The traditional
and perhaps the easiest method for this purpose is the assump-
tion of the existence of a multilinear relationship between these
groups and the property (here the solubility parameter).41 This
technique is a similar method to that used in the most of classical
group contribution methods.41 Several calculations show that
application of the aforementioned methodology for the current
problem does not contribute to accurate results within the range
of the deviations from experimental values40 that we are inter-
ested in. Consequently, a nonlinear mathematical method such
as ANN is preferred and investigated here. Using the Artificial
Neural Network toolbox of the MATLAB software (Mathworks
Inc.), a three layer Feed Forward Artificial Neural Network
(FFANN) has been developed for the problem.
Because we face a wide range of solubility parameter values

for different compounds, these values have been normalized
between �1 and +1 to prevent truncation errors.41 This can
be performed using maximum and minimum numbers of each
functional group in each compound for input data and using
maximum and minimum values of solubility parameter for output
parameters.41 In addition, this procedure, which is done in the
optimization process, is performed to obtain the parameters of the
Neural Networks (weights and bias), and it has no effects on the
model results. Later, these values are again changed to the original
solubility parameter values, which are finally used as the inputs and
reported as outputs of the developed model.41 In the second step,
the database is divided into three subdata sets including the
“Training” set, the “Optimization” set, and the “Test” set. In this
study, the “Training” set is used to generate the ANN structure, the
“Optimization” set is applied for optimization of the model, and the
“Test (prediction)” set is used to investigate the prediction cap-
ability and validity of the proposed model. The division of database
into three subdata sets is normally performed randomly. For this
purpose, about 80%, 10%, and 10% of the main data set are
randomly selected for the “Training” set (about 1296 solubility
parameter data), the “Optimization” set (162 solubility parameter
data), and the “Test” set (162 solubility parameter data). The effect
of the percent allocation of the three subdata sets from the database
on the accuracy of the final model has been studied elsewhere.76 In
distribution of the data through the three subdata sets, we generally
perform many distributions to avoid the local accumulations of the
data in the feasible region of the problem. As a result, the acceptable
distribution is the one with homogeneous accumulations of the data
on the domain of the three subdata sets.
There are generally two weight matrices and two bias vectors

in a three layer FFANN:W1 andW2, b1 and b2. These parameters
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should be evaluated by minimization of an objective function. The
objective function here is the summation of squares of errors
between the outputs of theANN(represented/predicted properties)
and the target values (experimental solubility parameters). This
minimization is performed by the Levenberg�Marquardt (LM)83

optimization strategy. There are also more accurate optimization
methods other than this algorithm; however, they need much
more convergence time.41�48Themore accurate optimization, the
more time is needed for the algorithm to converge to the global
optimum. The LM83 is themost-widely used optimizationmethod
in these kinds of problems.41

In most cases, the number of neurons in the hidden layer (n) is
fixed. Therefore, the objective is to produce the ANNmodel, which
is capable of predicting the target values as accurately as possible.
This step is repeated until the best ANN is obtained. Normally, in
three-layer FFANNs, it ismore efficient that the number of neurons
in the hidden layer is optimized according to the accuracy of the
produced FFANN.29�61 Some factors should be taken into account
in the determination of the optimum number of the neurons. By
increasing the number of neurons, the accuracy of the model, that
is, squared correlation coefficient (R2), is increased on the “Train-
ing set”. However, the accuracy of the model on the “Test set” is
decreased gradually, and the model may become unstable. Conse-
quently, the overall R2, which depends on the three subdata sets,
fluctuates during the changing of the numbers of neurons. The final
(overall) R2 value should be found through selecting the different
number of neurons for a specified problem.17

3. RESULTS AND DISCUSSION

An optimized GC-ANN model has been obtained applying
the preceding procedure for the determination of the desired
parameter. For this purpose, several 3FFANNs modules were
generated assuming numbers 1 through 50 for n (number of
neurons in hidden layer). The most accurate results (no over-
fitted and no under-fitted results) were observed at n = 10. It
should be noted that this value is not a global one, because the
optimization method used to train the ANN has great effects on
the obtained value.17,41 Therefore, the developed three-layer
FFANN has the structure of 176-10-1 (176 chemical groups are
regarded as the inputs of the algorithm).

A significant point that needs to be considered about the
number of the model parameters is that, in each compound, only
a few functional groups are present simultaneously (with the
maximum number of 27 groups in pimaric acid and isopimaric
acid). Therefore, for each compound, many of the model
parameters, which in total are 10 � 176 = 1760, are zero and
consequently, the developed model has few parameters for each
compound, that is, between 0 to 270 parameters. The value of
zero indicates that three of the investigated compounds do not
contain the determined functional groups in their structures by
the previous computational step. For these compounds, the
model results in the solubility parameter value of 18.19
(J/cm3)0.5, which has been calculated by the intercept of the
transfer function of the ANN algorithm (Refer to the Supporting
Information file to observe the characteristics of all of the
investigated organic compounds in this work). It should be
pointed out that the number of the model parameters for the
previous developed models17 were 11, 131, and 13 for the linear-
QSPR, ANN-QSPR, and LSSVM-QSPR models, respectively.
However, the number of parameters for the two later nonlinear
QSPR models17 and the proposed GC-ANNmodel in this study

may not be used as the only criterion for a comparison between
the developed models because they are based on different
network concepts with different mathematical characteristics,
which have been well-established in our previous work.17

Themat file (MATLAB file format) of the obtained GC-ANN
containing all the parameters of the model (weight matrices
and bias vectors) and the instructions for running the program
are freely available upon request to the authors. Running the
provided software, any researcher/engineer is able to determine
the solubility parameter of a particular substance quickly. The
employed functional groups to develop the model have been
reported as Supporting Information. The calculated/estimated
solubility parameter values are shown in Figure 1 in comparison
with the experimental values.40 Figure 2 indicates the deviations
of the obtained values versus the experimental ones.40

The statistical results obtained by the GC-ANN model are
reported in Table 1. Furthermore, the absolute average deviations

Figure 1. Comparison between the Cal (calculated)/Est (estimated)
results using the developed model and experimental values40 of solubi-
lity parameters.

Figure 2. Deviations of the obtained results vs the corresponding
experimental (Exp) solubility parameter values.40
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of the results from experimental values40 for each 81 chemical
families are reported as Supporting Information. The results imply
that the obtained ANN-GCmodel is more accurate and predictive
than our previously presented models17 based on the QSPR
strategy. For better illustration of the organic compounds inves-
tigated in this work, their chemical structures are sketched and
presented as Supporting Information.

It should be noted that we have observed that there are 17 data
points (from 1620 available data points) for which the presented
model results lead to more than 10% average relative deviations
from experimental values.40 It seems that there is no relation
between these compounds' structures to show some weaknesses
in determining the solubility parameter values of related chemical
families. Therefore, it is probable that the solubility parameter values
for these compounds are not accurate or may be somehow
erroneous (or with high uncertainty) because of the existing diffi-
culties and possible errors in experimental measurements.84�87

The proposed method has been developed based on all of the
available data including the aforementioned 17 data points. The
final significant point is that we do not have access to any other
solubility parameter database to check the capability of the pre-
sented model for prediction of solubility parameters of completely
nonsimilar compounds to those investigated. This fact again proves

the imperative need for the development of new experimental
techniques and apparatuses to generate more solubility parameter
data for particular industrial and theoretical purposes.

4. CONCLUSION

In this work, a group contribution-based model was presented
for the representation/prediction of the solubility parameter of
nonelectrolyte organic compounds at 298.15 K and atmospheric
pressure. The model is the result of a combination of Feed
Forward Artificial Neural Networks and Group Contributions.
The required parameters of the model are the numbers of
occurrences of 176 functional groups in each investigated
molecule. It should be noted that most of these functional groups
are not simultaneously available in a particular molecule. There-
fore, the computation of the required parameters from the
chemical structure of any molecule is simple. For developing
the model, the experimental solubility parameter values from the
largest available data set40 containing 1620 pure organic com-
pounds from 81 different chemical families were applied. As a
consequence, a reliable and predictive tool was developed to
determine the solubility parameter values of many of organic
compounds, which are especially applied in chemical and petro-
leum industry. However, one point should not be omitted from
our conclusion: The model has a wide range of applicability but
the prediction capability of the model is restricted to the
compounds which are similar to the applied to develop the
model. Application of the model for totally different compounds
than the investigated ones is conservative although it may be used
for a rough estimation of the solubility parameter of these kinds
of compounds.
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