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Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a
nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener
process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using
clinical pharmacokinetic (PK) data generated for an in vitroein vivo correlation (IVIVC) study of extended
release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The pre-
liminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction
absorbed (Fabs) versus time profiles when supplied with exactly the same externally determined unit
impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was
applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either
retained or excluded to inform parameter estimation. The resulting Fabs profiles were then used to model
level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded
on average similar results with respect to the IVIVC validation. These results could be achieved with sto-
chastic deconvolutionwithout recourse to IR data. Unlike numerical deconvolution, this also implies that in
crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be
included as part of the IVIVC analysis.

Published by Elsevier Inc. on behalf of the American Pharmacists Association.
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Introduction

A “level A” in vitroein vivo correlation (IVIVC) provides a quan-
titativemapping between the entire in vitro release time course and
the entire in vivo response time course.1 Inmore practical terms, the
designated in vitro method can serve as a surrogate for in vivo
clinical trials (i.e., bioequivalence studies) under certain circum-
stances. The utility of an IVIVC relies, in part, on its ability to guide
drug product development so as to reduce redundant formulation
prototyping and clinical testing.2 An approved IVIVC may be
invoked as part of a biowaiver request for certain types of post-
approval manufacturing changes.3 From a regulatory perspective,
a validated level A IVIVC is expected tomeet a set of criteria4 and an
important aspect of the regulatory review process is to assess an
IVIVC’s scientific soundness, predictive robustness, and accuracy.

For solid oral dosage forms, which are the focus of the present
study, the aforementioned in vivo response in 2-stage (deconvo-
lution based) IVIVC approaches is either the fraction of drug
released from the formulation in the gastrointestinal (GI) fluids
(referred to as “in vivo dissolution”dFrel), or the fraction of drug
appearing in systemic circulation (referred to as “fraction absor-
bed”dFabs). Neither Frel nor Fabs are typically reported as experi-
mentally measured data. Indeed, they have to be calculated based
on some absorption modeling approach.

The in vitro aspect of IVIVCmodeling requires particular attention.
The predictive valueof the quantitative linkagedefining an IVIVC is in
part underpinned by the bio-predictive power of the in vitro disso-
lution method. If the dissolution method inadequately mimics the
time course of the in vivo property of interest (e.g., cumulative
amount absorbed), even the most well-characterized absorption
modelmayprove inadequate to support apredictivelyaccurate IVIVC.

In the present work, an approach to IVIVC development is
presented based on a method referred to as “stochastic deconvo-
lution.” A more detailed introduction to stochastic deconvolution,
as used here, is described in Kakhi and Chittenden.5 In summary,
stochastic deconvolution involves a system of ordinary differential
equations (ODEs) representative of a mass balance in traditional
compartmental pharmacokinetics (PK) coupled to aWiener process
for tracking a time-dependent absorption rate coefficient. The
entiremathematical framework is embedded in a nonlinear mixed-
effects (NLME) population PK formalism.

With stochastic deconvolution, it was previously demonstrated5

that using simulated plasma concentrationetime data (generated
using an a priori known absorption profile), it was possible to
recover the very same absorption profile for 3 types of PK systems,
namely (1) a linear, time-invariant system, (2) a nonlinear system
based on MichaeliseMenten kinetics, and (3) a linear, time-variant
system representative of enterohepatic circulation. Cases (2) and
(3) are particularly notable because classical numerical deconvo-
lution would have been inapplicable under those circumstances.

In the study presented here, stochastic deconvolution has been
applied to experimental (as opposed to simulated) clinical PK data
stemming from a regulatory submission. This same data set has been
described and analyzed using 2-stage numerical deconvolution, and
these results have been reported elsewhere.6 Consequently, the
present work builds on earlier efforts with the overall goal of sys-
tematically evaluating the applicability, accuracy, and utility of sto-
chastic deconvolution in the context of IVIVC development.

Materials and Methods

Introduction

The drug product being evaluated in this study is an extended
release (ER) tablet formulation approved by the Food and Drug
Administration (FDA). The drug substance is understood to exhibit
linear PK over a dose range of 100-400 mg and is considered highly
water soluble. Immediate release (IR) formulations of this drug
substance are reported to have an absolute bioavailability (BA) of
about 75%. The ER dosage forms being investigated in this work
have been described in a separate publication.6

The data used for the mathematical modeling in this work are
based on a 4-way, 4-treatment, randomized, single-dose (100 mg),
fasting, crossoverstudyof3ERand1 IR formulationvariants involving
16 healthy adult volunteers. The study was designed for the purpose
of IVIVC development. There was a 1-week washout period between
the study periods. Plasma concentrations of the drug were deter-
mined for samples taken up to 48 hours post-drug administration for
the ER formulation treatments and 24 hours for the IR formulation.

Each subject was administered 3 ER oral dosage forms corre-
sponding to the slow (S), medium (M), and fast (F) formulations and
1 IR dosage form. All administered dosage forms belonging to a
particular formulation group came from the same manufacturing
batch. Dissolution profiles for each ER formulation from the
aforementioned production lots were measured using USP 1 (bas-
ket) apparatus at 75 rpm in 0.1 N HCl. Average fraction dissolved
in vitro was measured for each formulation from 12 units.

Modeling Strategy

The primary objective of this workwas to demonstrate the value
of stochastic deconvolution in the development of an IVIVC when
applied to clinical PK data. In achieving this objective, comparisons
are drawnwith the most commonmethod for IVIVC development,7

numerical deconvolution. Both methods of deconvolution were
studied using Phoenix/WinNonlin, version 6.48 (hereafter referred
to as “Phoenix”). The solutions obtained using stochastic decon-
volution were generated using the Phoenix model object with
custom-code written in the Phoenix Modeling Language.

Two separate analyses were investigated: (1) a comparison of
stochastic deconvolution versus numerical deconvolution when
both approaches use exactly the same unit impulse response (UIR)
characteristics and (2) a comparison of stochastic deconvolution
versus numerical deconvolution in the development and validation
of an IVIVC with various use scenarios for stochastic deconvolution.

A Comparison of Stochastic Versus Numerical Deconvolution When
Both Approaches Use Exactly the Same UIR Characteristics

This analysis provides a verification of the assumption that
numerical and stochastic deconvolution will yield the same result
for a given data set when providedwith the same inputs. To achieve
this objective, the IR data (on a per subject basis) were fit to an
equation described by a sum of 3 exponentials which was based on
a 2-compartment PK model involving time lag and first-order
absorption and elimination. This yielded the estimated macro-
constants and their associated exponents (B1, b1, B2, b2, B3, b3, where
B3 ¼ �ðB1 þ B2Þ) which served as direct input for numerical
deconvolution. For stochastic deconvolution, the volume of distri-
bution (V1) normalized by the BA and the corresponding micro-
constants (k01, ke, k21, k12, where k01 ¼ b3) were used.

The variable of interest for comparison, resulting from the
application of stochastic deconvolution and numerical deconvolu-
tion, was the fraction absorbed (Fabs) versus time profile, the time
derivative of which is the primary output variable in deconvolution
and is referred to as the input rate function. It should be noted that
in the present study, Frel and Fabs are assumed to be the same, that
is, the fraction dissolved in vivo is assumed to be equivalent to
the fraction absorbed into systemic circulation, reflecting rapid
absorption with dissolution as the rate-limiting step in systemic
BA. This is not a requisite assumption underlying stochastic



Figure 1. Schematic showing construction of “hat-type wavelets” used in Phoenix/
WinNonlin’s implementation of numerical deconvolution.
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deconvolution in general, but one that is considered suitable in
this instance.

The particular numerical deconvolution approach used in
Phoenix is based on “deconvolution through convolution” (DTC).9,10

The input rate function is modeled as a piecewise linear “precursor”
function convolved with an exponential “dispersion” function, the
latter being essentially a normalized exponential decay.8 The pre-
cursor function is composed of “hat-type wavelets” with support
points anchored at each observation time point, as shown sche-
matically in Figure 1. Within each “observation interval,” a dose
scaling factor (Xj) is defined that constitutes the fraction of the dose
applied in the jth wavelet. The precursor function is defined as a
linear weighted sum of the Xj and the wavelets, hj. Figure 1 shows
that at any given time, t*, there are 2 wavelets with their respective
Xj that contribute to the precursor function. Numerical deconvo-
lution converges toward a solution for the input rate function by
minimizing the sum of squared residuals based on the to-be-
estimated set of parameters Xj. What is particularly important to
note is that the fraction input rate is de-coupled from the dose (i.e.,
there is no boundedness criterion placed on

P
Xj), allowing for Fabs

to exceed unity when the UIR is not derived from intravenous PK
data.

Stochastic deconvolution is primarily an estimation method
based on the population PK/NLME framework. Precisely which
parameters are estimated is at the modeler’s discretion and
dependent on the complexity of the absorptionedisposition model.
The calculation of the input rate of drug (i.e., the deconvolution) is
essentially a by-product of the estimation method. For the sto-
chastic deconvolution being considered in this first analysis, 2-
compartment disposition kinetics were assumed with first-order
absorption and elimination, in line with the underlying model
structure set up to fit the IR data. The following system of ODEs was
solved per subject and per ER formulation:

� First-order mass transfer from the absorption compartment,
with the initial condition: at t ¼ 0, Aa ¼ 100 mg (the adminis-
tered dose of drug).

dAa

dt
¼ �kaAa (1)

The “fractional input rate of drug” in the context of stochastic
deconvolution is �1

DdAa=dt, where D is the administered dose of
drug, and therefore, the fraction absorbed, Fabs, is simply the time
integral thereof.

� Mass transfer for the central compartment, with first-order
elimination and exchange with the peripheral compartment.

dA1

dt
¼ kaAa � keA1 � k12A1 þ k21A2 (2)
� Mass transfer for the peripheral compartment.

dA2

dt
¼ k12A1 � k21A2 (3)

The plasma concentration is identified as the concentration in
the central compartment and defined in terms of V1:

C1ðtÞ ¼
A1ðtÞ
V1

(4)

In Equations 1-4, the PK parameters are fixed for each subject
across all formulations by the estimates derived from fitting the IR
data described earlier. Furthermore, time (t) is interpreted as “time
after dose”; this begins at zero for each administration of a
particular ER drug product formulation for a given subject and ends
at 48 hours according to the sampling schedule. The absorption rate
coefficient is modeled as a mixed effect5:

kaðtÞ ¼ qka,e
P

hka ðtÞ (5)

Equation 5 expresses the absorption rate coefficient as the
product of its (fixed effect) population estimate, qka , and the
exponentiated sum of random effects, hka ðtÞ, estimated at time
points defined by the blood draw samples of the observed data. The
structure defined in Equation 5 implicitly assumes that ka is log-
normally distributed. The absorption rate term

P
hka ðtÞ is defined

in the following manner:X
hkaðtÞ ¼

X
ti�t

hkaðtiÞ (6)

Equation 6 indicates that the value placed on the random walk
for hka at any given time is the sum of all random effects up to and
including that time, that is, random effects defined at observation
time points ti > t are not included in the summation. For each
observation time ti, the individual random effects for absorption are
expressed as increments of a Wiener process11:

hkaðtiÞ ¼ wi,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðti � ti�1Þ

p
(7)

The term wi is a normally distributed random variable associ-
ated with the Wiener increment, with a mean of zero and a vari-
ance (assumed to be constant) given by s2w and whose value is also
estimated by the solution procedure. Between the observation
times (for which there are no measured data), the randomwalk on
ka is held fixed. Between these increments, the ODEs presented
earlier are solved.

The DTC solution estimates an input rate profile that may exceed
the total dose amount, to account for the relative BA of the decon-
volved profile versus the reference (UIR) profile. In contrast, the
system of ODEs which form the framework of stochastic deconvo-
lution describes a mass balance. Consequently, to ensure that sto-
chastic deconvolution mimics numerical deconvolution, an
additional random effect was included which scales the dose added
to the absorption compartment at zero time. This is mathematically
the same as scaling up the input rate function, as in the DTC
approach.

A maximum likelihood estimate criterion was used to solve the
NLME system defined earlier. An additive error model was used to
build the likelihood function. The primary parameter estimates, for
which a solution is sought, are the typical (populationmean) values
of the absorption rate coefficient for each ER formulation, 16
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random effects associated with the absorption rate coefficient (one
at each observed time point), a random effect on BA, the variances
of all aforementioned random effects (noting that the variances of
all hka were assumed to be the same), and the residual errors
associated with the error model (one per ER formulation).
A Comparison of Stochastic Versus Numerical Deconvolution in the
Development and Validation of an IVIVC With Various Use Scenarios
for Stochastic Deconvolution

The goal of this second analysis was to apply stochastic decon-
volution as a full population PK model to the clinical PK data to
develop an IVIVC. In comparison with the model structure
described in the previous section, this required the following
modifications/considerations:

� The PK microconstant parameters were no longer supplied
to stochastic deconvolution from an external fit. Instead,
stochastic deconvolution estimated these parameters
“on the fly” by combining all the data (discussed
subsequently).

� The random effect associated with BA, referenced in the previ-
ous section, was no longer used.

� While in the previous section only a 2-compartment PK
model was considered (because of the PK micro-constant
input structure), now both single and 2-compartment
models were considered. The single-compartment ODEs can
be obtained by setting k12 and k21 to zero in Equations 2
and 3.

� The population PK/stochastic deconvolution method was
applied using all the clinical PK data (i.e., IR and ER formula-
tions), as well as just the ER data (i.e., the IR datawere withheld)
to inform the estimation of parameters.

The data were combined by re-defining “time” for a given sub-
ject to include all formulation treatments. In accordance with the
study plan, a 1-week washout time was prescribed to separate the
respective formulation administrations, and a transformed time
was defined, referred to as “relative actual time” (RAT), as
expressed in Equation 8:

tRAT ¼ ðFID� 1Þ � 7� 24þ t (8)

By staggering the dosage time in this manner, estimates were
sought for a subject’s V1 and ke that provided the best fit for all
formulations. In Equation 8, t is “time after dose” and FID is the
formulation identifier (1 ¼ fast, 2 ¼ medium, 3 ¼ slow, 4 ¼ IR).
Residual (unabsorbed) drug was zeroed before considering the
integration of the next profile (corresponding to a subject-
formulation combination). The prescribed washout time in the
model ensured that residual amounts of (absorbed) drug in the
central compartment (and peripheral compartment, for
2-compartment descriptions) had adequate time to be cleared by
the assumed first-order elimination.

Random effects were defined for volume of distribution and
elimination rate coefficient (hV1

and hke , respectively) common to
all formulation treatment arms and assigned to each subject. The
random effects on absorption, hka , were defined at each obser-
vation time point of the transformed time expressed in Equation
8. Thus, a unique hka was assigned to each blood sampling time
point per administered formulation. For an estimation problem
involving all 4 formulations (IR and 3 ER), 68 random effects
were defined to track the evolution of the absorption rate coef-
ficient over time. The structural parameters for V1 and ke were
defined as follows (based on an assumption of a log-normal
distribution):
V1 ¼ qV1
,ehV1 (9)
ke ¼ qke,e
hke (10)

The absorption rate coefficient was defined as in Equation 5 and
the system of ODEs expressed in Equations 1-3 also applied in this
instance, bearing in mind that time is now interpreted as relative
actual time (tRAT) as opposed to time after dose (t). For simplicity,
the intercompartment rate constants, k21 and k12, were defined as
fixed effects in the case of the 2-compartment PK models. As in the
previous section, an additive error model was used to build the
likelihood function.

The solution to stochastic deconvolution yielded individual
predictions of Fabs(t) per subject (N¼ 16) and per formulation (F, M,
and S). These individual Fabs(t) solutions were then used together
with the (arithmetically) averaged in vitro dissolution data in a
naive-pooled regression based on the following IVIVC, which con-
stitutes a linear model with constant time scaling:

FabsðtÞ ¼ As FdissðTs tÞ (11)

In Equation 11, t is the time after dose (an in vivo time scale), the
overbar symbol in Fabs denotes “averaged” to distinguish it from the
subject-specific values. As and Ts are constants expressing absorp-
tion and time scaling factors (respectively), and FdissðTs tÞ repre-
sents the average fraction dissolved in vitro evaluated at a linearly
transformed time Ts t ð¼ tvitroÞ. The naive-pooled regression esti-
mated the parameters As and Ts which are shared by all formula-
tions. Although more complex relationships could be developed
with potentially better accuracy, the goal was to demonstrate a
“proof of principle” for stochastic deconvolution using clinical PK
data rather than develop the most accurate IVIVC. The functional
relationship expressed as FdissðTs tÞ draws on the averaged in vitro
dissolution data which was fitted to a Weibull function, such that

FdissðtvitroÞ ¼ Fdiss;∞

�
1� e�ðtvitro=TdissÞb

�
(12)

A separate nonlinear regression was used to estimate the
parameters Fdiss;∞, Tdiss, and b sorted on formulation (F, M, and
S), that is, each formulation’s in vitro release was characterized
by its own specific set of parameter estimates. With the estab-
lished IVIVC expressed as Equation 11, an internal validation was
performed for all stochastic deconvolution scenarios which were
investigateddthese “scenarios” are discussed in the Results and
Discussion section. The validation of the IVIVC followed the
traditional approach of an arithmetically averaged relationship
between fraction dissolved in vitro and the fraction absorbed
in vivo. The IVIVC-predicted averaged plasma concen-
trationetime profile, denoted C1ðtÞ, was determined by solving
the differential equation system expressed in Equations 1-4
recast in an averaged context. Thus, the rate of drug loss from
the absorption compartment is now characterized by the
IVIVCeWeibull function and not the absorption rate coefficient
expressed in Equation 1:

dAa

dt
¼ �D As Ts Fdiss;∞

b

Tdiss

 
Ts t

Tdiss

!b�1

e
�

 
Ts t

Tdiss

!b

(13)

The overbar symbol in Aa denotes the averaged value based on
the IVIVC, and this distinguishes this value from Aa which is subject
specific and pertains to the stochastic deconvolution estimation
procedure. The mass transfer for the central compartment, analo-
gous to Equation 2, becomes:
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dA1

dt
¼ �dAa

dt
� eke A1 � qk12 A1 þ qk21A2 (14)

In Equation 14, eke is the log-mean (or geometric mean) of the
post hoc estimates of subject elimination rate coefficients. eke is
evaluated using the following relationship:

eke ¼ exp

"
1
N

XN
i¼1

ln
�
ke;i
�#

(15)

N denotes the number of subjects (assumed in this instance to be
the same per treatment arm). The choice of the averaged metric eke
is premised on the fact that the individual subject ke values are
assumed to be log-normally distributed, as evidenced by the defi-
nition in Equation 10. The terms qk12 and qk21 are the (population)
typical value final estimates of the intercompartmental rate con-
stants because these parameters were defined as fixed effects. If
single-compartment kinetics is assumed, qk12 ¼ qk21 ¼ 0. The mass
transfer relationship for the peripheral compartment (for only
2-compartment kinetics) can be expressed as:

dA2

dt
¼ qk12 A1 � qk21A2 (16)

The averaged IVIVC-predicted plasma concentration is given by:

C1ðtÞ ¼
A1ðtÞfV1

(17)

As in the case of Equation 14, fV1 is analogously defined to the
definition of the metric eke:
fV1 ¼ exp

"
1
N

XN
i¼1

ln
�
V1;i
�#

(18)

For comparative purposes, a parallel IVIVC using numerical
deconvolution was also developed. Equations 11 and 12 were also
Figure 2. Observations of in vitro dissolution profiles for ER formulation variants with
used to develop the IVIVC in this instance. Because the in vitro data
input are the same regardless of which approach is used to develop
the IVIVCs, the only significant difference between stochastic
deconvolution and numerical deconvolution rests with the result-
ing fraction absorbed profiles.

Results and Discussion

The in vitro and in vivo data sets used as the basis of the
studies are shown in Figures 2 and 3, respectively, expressed as
sample averages overlaid with error bars showing the standard
deviation. Qualitative rank-order correlation can be confirmed
by visual inspection. To gain more insight of the level of vari-
ability in the in vivo data, Figures 4 and 5 depict the distribution
of AUClast and Cmax in the form of box plots. The individual
spread of AUClast and Cmax are annotated randomly over the area
of the respective boxes. Although the monotonic drop in median
Cmax is apparent in Figure 5 from the IR to the slow formulations,
the median AUClast of the IR, fast, and medium formulations
appear constant, with a relative drop for the slow formulation.
Notably for the slow formulation, one particular subject has a
significantly lower AUClast and Cmax. However, this very same
subject (identified with the dotted circle in Figs. 4 and 5)
exhibits a behavior either very close to the median or well
within the interquartile range when administered the other
formulations.

A Comparison of Stochastic Deconvolution Versus Numerical
Deconvolution When Both Approaches Use Exactly the Same UIR
Characteristics

Figure 6 demonstrates that both approaches predict solutions
for Fabs(t) which are indistinguishable. Of particular note, the
Fabs(t) profile for subject ID “9” plateaus at just under 120% of
the dose. The estimate of the cumulative input at the last
observed time point is Fabs(t) multiplied by BA ratio (in this
instance) of the fast formulation’s to the UIR’s AUClast. Therefore,
error bars showing standard deviation (based on 12 samples per formulation).



Figure 3. Observations of averaged plasma concentrationetime profiles for all administered formulations (IR and ER). Error bars show standard deviation (N ¼ 16).
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in this particular scenario, the fast formulation has a higher
exposure than its corresponding UIR. The higher exposure is a
feature of the data and not a shortcoming of numerical decon-
volution per se. The corresponding comparisons for the medium
Figure 4. Box plot showing distribution of AUClast from raw data amongst subjects as a fu
percentiles (hinges) and the median. The upper and lower whiskers extend from their re
interquartile range. The overlaid, randomly dispersed black dots represent individual AUClast.
a notably lower AUClast when administered the slow formulation.
and slow formulations have been omitted for conciseness
because they provide the same level of similarity between the 2
deconvolution approaches as seen in Figure 6 but without the
visibly large Fabs z 120%.
nction of administered drug product formulation. Each box shows the 25th and 75th
spective hinges to the highest and lowest values, respectively, within 1.5 times the
The dotted circles identify the same subject across all formulations, who demonstrated



Figure 5. Box plot showing distribution of Cmax from raw data among subjects as a function of administered drug product formulation. Each box shows the 25th and 75th per-
centiles (hinges) and the median. The upper and lower whiskers extend from their respective hinges to the highest and lowest values, respectively, within 1.5 times the interquartile
range. The overlaid, randomly dispersed black dots represent individual Cmax. The dotted circles identify the same subject across all formulations, who demonstrated a notably lower
Cmax when administered the slow formulation.
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Comparison of the IVIVC Validation Based on Stochastic
Deconvolution and Numerical Deconvolution

The IVIVC model development and validation using stochastic
deconvolution in this second analysis was based on Fabs(t) profiles
stemming from 4 different modeling scenarios:

1. Using a single-compartment PK framework and in vivo data
from the IR and all ER treatment arms to inform on the esti-
mation of the model’s structural parameters (ka, V1, and ke).

2. Same as scenario 1 mentioned earlier but using in vivo data just
from the ER treatment arm for the estimation of structural
parameters.

3. Using a 2-compartment PK framework and in vivo data from the
IR and all ER treatment arms to inform on the estimation of the
model’s structural parameters (ka, V1, ke, k12, and k21).

4. Same as scenario 3 mentioned earlier but using in vivo data just
from the ER treatment arm for the estimation of structural
parameters.

All scenarios use the ER data to inform the parameter estimation
but scenarios 1 and 3 also include the IR data. This was deliberately
implemented to determine how well stochastic deconvolution can
converge on model estimates in the event that IR data were not
available.

Each of the scenarios mentioned earlier constitutes an estima-
tion problem requiring initial estimates for the typical values
(“fixed” effects) of the structural parameters, the variances of all
random effects, and the residual error associated with the additive
error model. The initial estimates of the typical values of the
structural parameters (ka, V1, ke, k12, and k21) were based on the
respective medians derived from the 1- or 2-compartment PK
model fit of the in vivo data.

The initial estimates of the variances of the random effects (u2
ke

and u2
V1
) were chosen to allow for an initial coefficient of variation
of about 30% in the structural parameters. The initial estimate for
the residual error/variability (s) was selected to be 10% of median
concentration. These estimates worked well for the single-
compartment scenarios (1 and 2), but the 2-compartment test
cases (scenarios 3 and 4) benefitted fromhigher initial estimates for
variance by yielding more plausible final solutions, as discussed in
the paragraph given subsequently. Solution robustness was inves-
tigated by examining the effect of the choice of solver for the ODEs
(stiff vs. non-stiff), optimization algorithm (FOCE-LB vs. FOCE-ELS),
and variations in the initial estimates.

Several metrics were considered when determining the
plausibility of any given solution. For an adequately converged
solution (implying a “return code” from Phoenix’s NLME solver in
the range of 1 to 3), first and foremost, the magnitudes of the
final typical value estimates for V1 and ke were assessed. This
means that if these final estimates were significantly different
from the plausible range of values based on the literature and the
estimates of PK data fits (discussed earlier), the results would not
be given further consideration. It should be noted that for the 2-
compartment treatment of stochastic deconvolution, the volume
of distribution at steady state (as opposed to V1) was evaluated as
the relevant comparative metric, and calculated via
Vss ¼ V1ð1þ k21=k12Þ. Literature values for V1 and ke are of the
order of 200 L and 0.1 h�1, respectively. For the other parameters
(ka, k12, and k21), no suitably credible comparative values could
be drawn on to develop an informed assessment for their
plausibility.

Given a plausible set of final parameter estimates for V1 and ke,
the next step in the assessment procedure revolved around the
consideration of the model’s Akaike information criterion between
successive estimation steps, the magnitude of standard errors for
typical values of the structural parameters, the magnitude of the
h-shrinkage associated with the random effects on V1 and ke and
the distribution of both the random effects on V1, ke, and the con-
ditional weighted residuals. Of note, not all solutions reported



Figure 6. Comparison of calculated fraction absorbed per subject from numerical deconvolution (black dots) and stochastic deconvolution (red line) based on the same UIR input,
after administration of the fast formulation.
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standard errors. This could result from an overparameterized
model, a solution too far from a local minimum in the likelihood
function surface, or from numerical difficulties computing gradi-
ents near the solution. Due to the stability of the solutions from
multiple starting points and the identifiability of many of the less
optimal solutions, the latter explanation is considered to be most
likely.

The modeling strategy was to begin with the initial estimates,
obtain a solution, and then use these final estimates for all the
calculated parameters as a starting guess for the next “iteration.”
This procedure was continued until a stable solution was found or
at least one which best exemplified the set of assessment criteria
presented earlier. Generally, it was found that using the FOCE-ELS
algorithm to compute the maximum likelihood estimates coupled
to the non-stiff ODE solver provided the most robust and stable
results. Of the 4 modeling scenarios investigated and listed at the
start of this section, the stochastic deconvolution estimation of the
single-compartment PK model using IR data to inform parameter
estimation (scenario 1) was found to be the most robust test case,
Table 1
Estimates of PK Parameters (With Associated Standard Errors Expressed as Percentages

Scenario V1 or Vss (CV%)

(L)

1. SDcon: 1-compartment PK with IR 332 (3%)
2. SDcon: 1-compartment PK without IR 324 (0.8%)
3. SDcon: 2-compartment PK with IR 335 (1.1%)
4. SDcon: 2-compartment PK without IR 354 (1.1%)
that is, the final estimates of qke and qV were the least sensitivewith
respect to choice of optimization (i.e., FOCE-LB or FOCE-ELS), ODE
solver algorithm, and initial estimates of the mixed-effects
parameters.

Table 1 presents the final typical value estimates for the study
scenarios, numbered in the same order as the list presented at
the start of this section. The first 2 columns next to “Scenario”
express the population mean PK parameter estimates, whereby
V1 corresponds to the single-compartment and Vss to the
2-compartment models. The values in parentheses represent
the percent coefficients of variation (or relative standard error)
calculated from the standard errors of the respective estimates. The
broad similarity of parameter estimates for volume of distribution
and elimination rate coefficient for the various deconvolution
scenarios implies that even when the IR data set is omitted (for
scenarios 2 and 4), there is evidently enough information in the
observed data to inform on the PK parameter estimates. The
observation of viable PK parameter estimates in the absence of IR
data is important because it suggests that stochastic deconvolution
in Parentheses) and Shrinkages for Stochastic Deconvolution Estimation Scenarios

ke (CV%) Shrinkage (�)

(h�1) hV hke ε

0.12 (6.6%) 0.22 0.021 0.21
0.10 (0.9%) 0.54 0.73 0.37
0.14 (1.6%) 0.17 0.32 0.32
0.11 (1.1%) 0.41 0.08 0.41
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can be used to calculate the averaged fraction absorbed without
recourse to any IR data. In addition, this also implies that data for
subjects in a crossover study, for whom the IR formulation was
missed, can still be included as part of the analysis; for classical
numerical deconvolution, the lack of an IR data set (for UIR char-
acterization) would make the approach unworkable.

The last column in Table 1 lists the h- and ε-shrinkages.
Generally, the shrinkage values (except for scenario 2) are relatively
contained implying the individual data are sufficiently abundant so
that individual parameter estimates mimic the true individual
parameter estimates.12 More specifically, there is confidence in the
h estimates of the U-matrix and little concern with model “over-
fitting.” Even in the case of scenario 2 which registers higher
shrinkages across the board, the end goal of the present study was
not to use the h estimates for prediction purposes in a regression/
covariate model or to make inferences about parameter values but
rather to inform on an averaged absorption profile that can be
subsequently used to develop an IVIVC. Based on a sample size of 16
subjects, the distribution of hke and hV1

showed that a box plot
straddled the zero reference line (plots not shown). Scenario 3
(2-compartment PK with IR data) exhibited the largest degree of
skewness particularly with respect to hke . Plots of conditional
weighted residuals versus time after dose sorted by ER formulation
showed that the distributions are centered about zero with a uni-
form variance (plots not shown). Regarding run times, scenario 3
(involving a total of seventy random effects) was the slowest to
converge requiring just over half an hour on a Dell Precision T7500
dual processor (X5687d3.6 GHz) workstation with the message
passing interface feature checked in Phoenix to take advantage of
the multiple hardware cores.

The ability of stochastic deconvolution to fit the plasma con-
centrationetime profiles of the ER formulations is demonstrated in
Figures 7 and 8 for the averaged and individual cases, respectively.
The plasma concentration, labeled as Cp, is understood to be
equivalent to C1 expressed in Equation 4. The figure legends provide
the key to the type of deconvolution that was performed; for
example “ND” denotes numerical deconvolution, “SD_1PK_IR”
represents scenario 1 (single-compartment PK using IR and ER data
to inform on parameter estimation) and “SD_1PK_noIR” represents
scenario 2 (single-compartment PK using only ER, i.e., no IR, data to
inform on parameter estimation), etc. There is minimal difference
observed in the goodness of fit calculated by all the considered
methods/scenarios of deconvolution. Note that the specification of
Figure 7. Comparison of averaged, predicted plasma concentrationetime profiles from num
represent the averaged observed data. SD_1PK_IR denotes stochastic deconvolution with 1-
with 1-compartment PK excluding IR data set, etc.
the administered formulation and the y-axis scaling in Figure 8
have been deliberately omitted. The individual plasma concen-
trationetime profiles for the remaining formulations show similar
levels of fit to the one in Figure 8 and have been omitted for
conciseness.

The Fabs profiles corresponding to Figures 7 and 8 are shown in
Figures 9 and 10, respectively. On average, the difference in the
Fabs profiles for all methods examined was small, except for the
stochastic deconvolution involving a single-compartment PK
without the IR data to inform the estimation process
(SD_1PK_noIR) after about 10 hours. In the present model, Fabs is
related to exposure because both methods of deconvolution
attempt to fit the concentrationetime data (and therefore get the
“correct” AUClast). Numerical deconvolution uses V1 based off the
IR formulation data, whereas stochastic deconvolution estimates
V1 across IR and ER formulations or just the latter depending on
the scenario under consideration. Because the estimated V1 values
can be different, this must affect the BA, if the fitted Cpet profiles
are essentially the same; alternatively when V1 is biased, so too
may Fabs. The Fabs profiles for individual subjects in the case of the
other 2 formulations (plots not shown) do not provide any other
significantly different trends compared with Figure 10. It is noted,
however, that Fabs[100%, was also calculated with numerical
deconvolution in the present analysis as in the case of subject ID 9
in Figure 6. Stochastic deconvolution consistently calculates
Fabs �100%.

The parameter estimates for As and Ts, as expressed in the
proposed IVIVC link function (Eq. 11), resulting from the various
deconvolution methods were within 3% of each other. The IVIVC-
predicted (averaged) Cpet profiles are shown in Figure 11. Table 2
lists the validation in terms of the percent prediction error (%PE).
The “Predicted” column has been omitted in Table 2 to enhance
its readability. It can, however, be easily recovered because the
observed magnitude of the PK parameter and the %PE are known.
Figure 11 and Table 2 demonstrate that there is little difference
between the methods of deconvolution considered. All the
deconvolution methods constituted a borderline pass/fail of the
internal validation. Previous work on these same data using
numerical deconvolution6 predicted a %PE of �17% in Cmax for the
fast formulation. The difference in the value obtained in this
work is attributed to the choice of the Weibull function to fit the
in vitro data as opposed to a Hill function used in the previous
work.
erical deconvolution (ND) and various stochastic deconvolution (SD) scenarios. Dots
compartment PK including IR data set; SD_1PK_noIR denotes stochastic deconvolution



Figure 8. Comparison of individual, predicted plasma concentrationetime profiles from numerical deconvolution (ND) and various stochastic deconvolution (SD) scenarios. Dots
represent the individual observed data (Y-scaling omitted deliberately). SD_1PK_IR denotes stochastic deconvolution with 1-compartment PK including IR data set; SD_1PK_noIR
denotes stochastic deconvolution with 1-compartment PK excluding IR data set, etc.
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Conclusions

Stochastic deconvolution is a parameter estimation method that
uses an NLME model to estimate an absorption rate coefficient
(based on a pre-defined compartmental PK specification) defined
Figure 9. Average fraction absorbed profiles calculated from numerical deconvolution (ND
deconvolution with 1-compartment PK including IR data set; SD_1PK_noIR denotes stocha
as a random walk (Wiener process). Stochastic deconvolution
serves as a diagnostic tool to inform on, rather than guess, a
mapping (or link) function between the fraction-absorbed Fabs and
the fraction of drug dissolved in vitro (Fdiss) when applying 1-stage
methods to IVIVC modeling, such as direct convolution and
) and various stochastic deconvolution (SD) scenarios. SD_1PK_IR denotes stochastic
stic deconvolution with 1-compartment PK excluding IR data set, etc.



Figure 10. Individual fraction absorbed profiles for medium ER formulation calculated from numerical deconvolution (ND) and various stochastic deconvolution (SD) scenarios.
SD_1PK_IR denotes stochastic deconvolution with 1-compartment PK including IR data set; SD_1PK_noIR denotes stochastic deconvolution with 1-compartment PK excluding IR
data set, etc.
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population IVIVC approaches. Furthermore, stochastic deconvolu-
tion is not restricted to linear, time-invariant systems. In the work
presented in this study, stochastic deconvolution was applied to
clinical (PK) data to assess the method’s ability to predict Fabs
profiles which can then be used to develop an IVIVC as part of a 2-
stage process. A key aspect of this assessment focused on whether
the clinical PK data for ER formulations could be used without
Figure 11. Comparison of averaged, predicted plasma concentrationetime profiles from IVI
scenarios. Dots represent the averaged observed data. SD_1PK_IR denotes stochastic deconv
deconvolution with 1-compartment PK excluding IR data set, etc.
additional input from IR data to estimate the parameters of the
underlyingmodel structure and inform on the Fabs profiles required
for the IVIVC analysis. Numerical deconvolution was used as a
comparative vehicle to draw on notable similarities and differences
with stochastic deconvolution.

An initial analysis sought to determine under what circum-
stances numerical and stochastic deconvolution can be constrained
VC based on numerical deconvolution (ND) and various stochastic deconvolution (SD)
olution with 1-compartment PK including IR data set; SD_1PK_noIR denotes stochastic



Table 2
Table of Percent Prediction Errors (%PE) Based on Numerical Deconvolution (ND) and Various Stochastic Deconvolution (SD) Scenarios

Formulation Parameter Observed Percent Prediction Error (%PE) ¼
�
Predicted�Observed

Observed

�
� 100

SD_1PK_IR SD_1PK_noIR SD_2PK_IR SD_2PK_noIR ND

Fast AUClast 2787 �11.2 �8.8 �9.3 �9.2 �3.4
Cmax 168 �8.7 �10.7 �11.5 �9.5 �12.6

Medium AUClast 2716 �11.1 �8.6 �9.2 �9.2 �3.9
Cmax 128 �0.85 �1.0 �3.1 �1.3 �3.3

Slow AUClast 2301 �0.64 2.2 1.4 1.5 7.2
Cmax 103 15.5 15.4 13.0 14.9 13.1

〈j%PEj〉 AUClast 7.6 6.6 6.7 6.6 4.8
Cmax 8.4 9.0 9.2 8.6 9.6

SD_1PK_IR, stochastic deconvolution with 1-compartment PK including IR data set; SD_1PK_noIR, denotes stochastic deconvolution with 1-compartment PK excluding IR data
set, etc.
Last row expresses average (over all formulations) of the absolute %PE for the respective PK parameter.
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to predict exactly the same Fabs profiles. Here, when both ap-
proaches were supplied with the same UIR input, the resulting Fabs
profiles were identical. This similarity, however, could only be
achieved by allowing stochastic deconvolution to adjust BA
by means of a random effect multiplier. This multiplier was
required because numerical deconvolution is not mathematically
constrained to ensure that Fabs �100%, whereas stochastic decon-
volution requires this constraint because the underlying model
structure relies on a mass balance.

The subsequent analysis looked at 4 stochastic deconvolution
scenarios involving a model structure for a single- and 2-
compartment PK, in which IR data were either included or
excluded to inform parameter estimation. In all 4 scenarios, solu-
tions resulting in plausible estimates for V1 and ke could be iden-
tified which were comparable using the FOCE-ELS optimization
algorithm and a non-stiff ODE solver in Phoenix (v6.4). The
resulting Fabs profiles were then used to build an IVIVC using in vitro
data fitted to a Weibull model. All the considered stochastic
deconvolution scenarios, as well as numerical deconvolution,
yielded very similar results with respect to the IVIVC validation.
Given that similar results could be achieved with stochastic
deconvolution without recourse to IR data was considered a posi-
tive outcome because this implies that data for subjects in a
crossover study, for whom the IR formulation was missed, can still
be included as part of the analysis. In contrast, for classical nu-
merical deconvolution, the lack of an IR data set (for UIR charac-
terization) would make the approach unworkable.

The present example looked at a drug substance whose PK was
known to be linear over the dose range of interest. To challenge
the utility of stochastic deconvolution further, future work will
look at systems where such conditions do not prevail and where
numerical deconvolution is known to fail to produce a predictive
IVIVC. Another area where the current approach may be enhanced
is to verify if the modeled IVIVC developed from the present 2-
stage analysis can be used to inform a 1-stage population-PK
IVIVC, possibly resulting in improved h- and ε-shrinkage. In this
work, a “traditional validation” of the IVIVC was performed (i.e., it
was based on averaged metrics for the assessment of the %PE as
per the recommendations in the FDA guidance document4).
However, the populationePK IVIVC methodology could extend
the validation criteria, so that intersubject variability can be
incorporated and a more rigorous picture of formulation perfor-
mance evaluated.
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