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A broadly applicable model for predicting controlled release could eliminate the need for exploratory,

in vitro experiments during the design of new biodegradable matrix-based therapeutics. We have

developed a simple mathematical model that can predict the release of many different types of agents

from bulk eroding polymer matrices without regression. New methods for deterministically calculating

the magnitude of the initial burst and the duration of the lag phase (time before Fickian release) were

developed to enable the model’s broad applicability. To complete the model’s development, such that

predictions can be made from easily measured or commonly known parameters, two correlations were

developed by fitting the fundamental equations to published controlled release data. To test the model,

predictions were made for several different biodegradable matrix systems. In addition, varying the

readily attainable parameters over rational bounds shows that the model predicts a wide range of

therapeutically relevant release behaviors.
Introduction

Since polymer matrices were first used to protect and deliver

drugs,1 controlled release technology has expanded considerably.

At present, a wide variety of biodegradable polymers, encapsula-

tion techniques, and matrix geometries have been employed to

deliver agents ranging from small molecule chemotherapeutics

to protein vaccines.2–4 The wide applicability of polymer

matrix-based controlled release technology allows for the devel-

opment of numerous unique therapeutics, each with the poten-

tial to improve patient quality of life through increased patient

compliance and more effective administration.5

The methods for developing specific therapeutics have,

however, changed little since the field of controlled release first

began.1 Although research on controlling the delivery of

numerous drugs now abounds, formulating each new therapeutic

still requires months of iterative and costly in vitro testing to

target a suitable drug release profile.6,7 Studying a broad array

of literature on bulk eroding polymer matrices shows that this

profile can range from linear to four-phase patterns with (1) an

initial burst, (2) a lag phase, (3) a secondary burst and (4)

a terminal release phase.8–21 Further, reports studying these

systems debate which, if any one, property, such as the polymer
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degradation mechanism, matrix crystallinity or others, is the

most influential for controlling release.22

Spurred by a desire to hasten the development of new therapeu-

tics, many efforts have been made to model degradation-

controlled release profiles based on the physical properties of

the matrix, drug, and polymer.22–29 In one of the first models

describing release from a biodegradable polymer matrix,

Thombre and Himmelstein used finite element mathematics to

compute release governed by Fick’s second law.24 In an effort to

account for the effect of matrix erosion on release, an effective

diffusivity proportional to the extent polymer degradation was

incorporated into the model. Later work by Saltzman and Langer

used percolation theory and in vitro release studies to demonstrate

that protein diffusion through non-biodegradable, porous

polymer matrices was accurately described by Fick’s second law

with an effective diffusivity dependent on the matrix porosity.25

More recently, stochastic methods have been used to describe

a porosity that increases with time in biodegradable systems.

Göpferich and Langer employed these methods to calculate the

release of a water soluble small molecule from polyanhydride

disks that were assumed to degrade solely through surface

erosion (the rate of hydrolysis being much faster than the

diffusion of water).26 While varying two parameters produced

an accurate description of pore formation, significant deviations

were reported during comparisons to release data.26 Using

a similar approach, Siepmann et al. described the release of

a low molecular weight chemotherapy agent from bulk-eroding

PLGA microspheres.27 To improve the description of drug

egress, equations governing porosity dependant diffusion of

agent were added to the Monte Carlo simulation. A two param-

eter regression confirms that fluorouracil release data can be

fitted with an R2 of 0.99.27 Together, these models show that

stochastic simulations can represent pore growth in biodegrad-

able matrices and that the regression of Fick’s second law

extends this description to small molecule release.
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Fig. 1 Schematic depiction of a model paradigm that can account for

four-phase release. A) Cross section diagrams depicting the four phases

of release for a double emulsion microparticle with agent encapsulated

heterogeneously in occlusions. Initially, agent abutting the matrix surface

is released (1). The remaining agent requires the growth and coalescence

of pores for further egress (2–4). B) Release profile for macromolecular

drug encapsulated in biodegradable polymer matrix with four phases

of release labeled. The numbers associated with each cross section

diagram (A) indicate which phase of the release profile is illustrated.

These phases are 1) initial burst, 2) lag phase, 3) secondary burst and

4) final release.
Taking a different approach, Batycky et al. recently developed

a model based upon differential equations to describe burst–lag–

burst type release from polyester microparticles.28 This model

was validated for the release of several different proteins from

50 : 50 PLGA or PLA microspheres and, in one case, predicted

up to 85% of release. While the piecewise functions used in this

model can predict release without regression, values for five

formulation-specific parameters that can only be acquired

through careful observation of release data28 are required to

make these predictions. Furthermore, the initial burst release

in this model was attributed to the desorption of agent from

the matrix surface,28 a mechanism which has recently been

disputed.15,30

Each of the aforementioned models22–29 takes steps towards

enabling the rational design of biodegradable controlled release

matrices. In order to supplant the need for exploratory in vitro

release experiments in the design of controlled release therapeu-

tics, though, a model must satisfy three requirements. 1) The

model must apply to a wide range of agents because each new

therapeutic must deliver a unique drug.2,4 2) The release of

such agents must be described entirely from readily attainable

design parameters, thereby allowing researchers to acquire

specifications for a matrix from a given release profile or dosing

schedule.3 3) The model must be robust enough to capture the

breath of release behaviors that have been documented for the

system in question, in this case, bulk eroding polymer

matrices.8–21

The present work documents the development and implemen-

tation of a new controlled release model designed to meet the

criteria specified above. This model uses new methods to describe

the release of water-soluble agents that are discretely encapsu-

lated in bulk eroding, polymer matrices and that dissolve rapidly,

relative to the time scale of release. In addition to new funda-

mental equations, the model includes two correlations that

enable predictions with knowledge of just five parameters, all

commonly known or easily measured prior to release. These

parameters are microsphere radius Rp, occlusion radius Rocc,

polymer degradation rate kCw, polymer initial molecular weight

Mwo, and agent molecular weight MwA. As a test of the model,

regression-free predictions were compared to multiple sets of

published experimental data. Furthermore, by varying the

matrix-specific parameters, we explored the range of attainable

dosing schedules. Finally, regression to a desired dosing schedule

will generate a set of matrix design parameters to guide the

fabrication of a matching controlled release therapeutic.
Fig. 2 Schematic depiction of the initial burst as it relates to occlusion

size. A) The double emulsion particle contains large occlusions filled

with drug solution and produces a significant initial burst. B) The

more uniformly loaded (e.g. single emulsion particle, melt cast matrix)

contains small granules of drug and has minimal initial release.
Model development

Paradigm

Consider an initially uniform matrix of known geometry

comprised of a biodegradable polymer, such as a polyester or

polyanhydride, and with randomly distributed entrapped release

agent (e.g. drug of concentration CAo), loaded below its

percolation threshold (such that agent remains discrete) to

ensure matrix mediated release. This agent can either be

dispersed as crystals (such as in the case of uniformly loaded

systems, e.g. single emulsion-based particulates) or housed

as a solution in occlusions (e.g. double emulsion-based
1874 | J. Mater. Chem., 2008, 18, 1873–1880
particulates).3 At time zero, an aqueous reservoir begins to

hydrate the matrix, a process which happens quickly for the

bulk eroding polymers matrices considered herein.28,31 As the

matrix hydrates, encapsulated agent adjacent to the matrix

surface (with a direct pathway for egress) diffuses into the

reservoir in a phase typically dubbed ‘‘the initial burst’’ (Fig. 1,

phase 1). The relative size of the occlusion (Rocc) occupied by

the encapsulated agent is proportional to the magnitude of the

initial burst as illustrated in Fig. 2.

As the initial burst release commences, degradation of the

polymer begins, increasing chain mobility and effectively leading

to the formation of pores in the polymer matrix32 (Fig. 1, phase

2). Although a number of mechanisms have been proposed for

this heterogeneous degradation profile, one hypothesis, which

has been reinforced by experimental data, is based upon regions

of varying amorphicity and crystallinity.33–35 It is believed that
This journal is ª The Royal Society of Chemistry 2008



amorphous regions of polymer erode first, leaving behind pores

(as shown using scanning electron microscopy).32 These pores

appear to be essential for subsequent release36 (Fig. 1, phase 3).

With the cumulative growth and coalescence of these pores,

agents are able to diffuse towards the surface of a polymer

matrix that would otherwise be too dense to allow their passage36

(Fig. 1, phase 4). Thus, a pore is defined as a region of polymer

matrix with an average molecular weight low enough to allow

the release of encapsulated agent. (This is in contrast to the

occlusion, which is defined as a region occupied by dissolved

or solid agent, marked by the absence of polymer matrix.)

Further, the molecular weight associated with release may vary

for each encapsulated agent type (small molecule, peptide,

protein, etc.), leading to a size-dependent restriction for agent

egress.

With a size-dependent restriction on egress established, the

degradation controlled release of any encapsulated agent can

only occur when the following four conditions are satisfied. 1)

The release agent must be present in the polymer matrix. 2) A

pore must encompass the release agent. 3) That release agent

must be able to diffuse through the encompassing pore. 4) The

pore must grow and coalesce with others to create a pathway

for diffusion to the surface.
Equations

Agent concentration within a matrix (such a microsphere, rod, or

thin film) can be calculated from Fick’s second law (Equation 1)

for any point in time (t) or space (r), provided that the agent is

not generated or consumed in any reactions while within the

matrix.23–25,27

vCA

vt
¼ V

�
DeffVCA

�
(1)

where Deff is an effective diffusivity term. Integrating CA/CAo

over the entire matrix volume yields the cumulative fraction of

agent retained in the matrix (P(t)) (Equation 2).

P(t) ¼ V�1
Ð
CA/CAodV (2)

In turn, the cumulative fraction of agent released (R(t)), a metric

commonly used to document formulation performance, is simply

(Equation 3):

R(t) ¼ 1 � P(t) (3)

At the center point, line, or plane of the matrix (r ¼ 0)

symmetry conditions are defined such that dCA/dr ¼ 0. At the

matrix surface (r ¼ Rp) perfect sink conditions are specified. A

boundary also exists at a depth of Rocc in from the matrix surface

(r ¼ Rp � Rocc) where continuity conditions are defined. In the

subdomain from Rp to Rp � Rocc (terminating one occlusion

radius in from the particle surface), agent is subject to the initial

release, such that Deff is simply a constant (D), reflecting the

movement of agent through the hydrated occlusions abutting

the matrix surface. In the subdomain from 0 to Rp � Rocc, agent

is subject to pore-dependent release, such that Deff ¼ D3 where D

is the diffusivity of the agent through the porous matrix and 3 is

the matrix porosity.
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For a system of like matrices, such as microspheres or sections

in a thin film, that degrade randomly and heterogeneously, the

accessible matrix porosity is simply a function of time as

a discrete pore has, on average, an equal probability of forming

at any position in the polymer matrix. Hence, the time until pore

formation can be calculated from the degradation of the polymer

matrix, as any differential volume containing a pore would have

a lower average molecular weight than its initial value. Assuming

that the polymer degradation rate is normally distributed,34 the

induction time for pore formation will also follow a normal

distribution. As this pore formation is cumulative, the time-

dependent matrix porosity (3(t)) can be described with a cumula-

tive normal distribution function (Equation 4).

3ðtÞ ¼ 1

2

�
erf

�
t� �tffiffiffiffiffiffiffi

2s2
p

�
þ 1

�
(4)

In this equation, t� is the mean time for pore formation and s2 is

the variance in time required to form pores.
Implementation

Calculating 3(t). Calculating the cumulative normal induction

time distribution (3(t)) requires values for t� and s2. For polymers

that obey a first order degradation rate expression, the mean

time for pore formation (t�) can be determined as follows:

�t ¼ �1

kCw

ln

����Mwr

Mwo

���� (5)

where kCw is the average pseudo-first order degradation rate

constant for the given polymer type, Mwo is the initial molecular

weight of the polymer, and we define Mwr as the average polymer

molecular weight in a differential volume of matrix that permits

the diffusion of the encapsulated agent. For blended polymer

matrices, the value for t� was calculated by averaging the results

obtained from equation 5 for each component.

It is reasonable to believe that the matrix molecular weight at

release (Mwr), which dictates how much degradation is required

before release can occur, would vary depending on the size of the

encapsulated agent. Macromolecules or larger agents can only

diffuse through a section of matrix if it is almost entirely free

of insoluble polymer chains. Hence the Mwr for such agents is

considered the polymer solubility molecular weight (668 Da for

50 : 50 PLGA as provided by Batycky et al.).28 As agent size

decreases (as indicated by MwA), however, egress can occur

through more intact sections of polymer matrix (higher Mwr),

as less free space is needed to allow their passage.

The distribution of polymer degradation rates (kCw(n))

attributed to matrix crystallinity is needed to calculate the

variance (s2) in the induction time distribution for pore forma-

tion (3(t)).33 To determine kCw(n), the first order degradation

rate equation Mw ¼ Mwoe�kCwt was linearly fitted at three

different time periods to published degradation data for the

desired hydrolysable polymer. Fitting the initial slope of the

degradation profile provides the degradation rate constant of

amorphous polymer as degradation occurs faster in amorphous

regions of the matrix.33 Fitting data from the final weeks of

degradation produces a rate constant for the crystalline material,

as amorphous regions are largely eroded by this point. Finally,
J. Mater. Chem., 2008, 18, 1873–1880 | 1875



a fit of the entire degradation profile yielded a rate constant

indicative of the overall morphology.

With values for kCw(n) defined, a distribution of induction

times (t(n)) was calculated using equation 5. For blended

polymer matrices this t(n) includes values calculated at all

component kCw(n) and Mwo. The standard deviation was taken

for t(n), then divided by a crystallinity-based factor and squared,

yielding an adjusted variance (s2), which conforms with lamellar

size data.

This crystallinity-based factor adjusts the probability of

finding pores formed from the fastest degradation rate in

kCw(n) to match the probability of finding a differential volume

of matrix containing purely amorphous polymer. For all

modeled cases, this differential volume is defined as a region

large enough to allow the passage of a small virus or protein

complex (20 nm diameter). As multiple lamellar stacks can fit

into this differential volume, the probability that such a volume

is purely amorphous can be calculated from of the number of

stacks per differential volume and the average crystallinity of

the matrix. From crystallinity data on 50 : 50 PLGA

matrices,33,34 the probability of finding a purely amorphous

differential volume is calculated as 0.05%. Thus, to ensure that

the probability of finding a pore formed from the fastest degra-

dation rate in kCw(n) also equals 0.05%, the standard deviation

in the induction time distribution for pore formation was

adjusted by a factor of 5. Similarly, factors of 4 and 2 were

calculated from crystallinity data for 75 : 25 PLGA and polyan-

hydride matrices, respectively.34,37,38

Solution and regression

With values for t� and s2 selected (defining 3(t)), a finite element

solution to equation 1 was calculated (Comsol�, v3.3) for the

given matrix geometry, using default solver settings. (To

decrease computation time, the matrix geometry was simplified

to one dimension based on symmetry, for a sphere, or high

aspect ratio, for a thin film.) The resulting concentration profiles

were numerically integrated to calculate the cumulative fraction

of agent released (equations 2 and 3). For validation, the numer-

ical solutions of the model were fit to experimental data sets by

varying Mwr and D. (It should be noted that data points charting

the kinetics of the initial burst were omitted from these regres-

sions, as the model only predicts the magnitude of this phase.)

Each fit was optimized (Matlab�, R2007a) based on a minimized

sum-squared error (SSE) or weighted sum-squared error (wSSE)

when error bars were provided.
Table 1 List of experimental systems used for model validation

Agent MwA/Da Polymer

Metoclopramide 297 50:50 PLGA
Ethacrynic ccid 303 50:50 PLGA
Betamethasone 392 50:50 PLGA
Gentamicin 477 50:50 PLGA
Leuprolide 1 209 50:50 PLGA
Melittin 2 860 50:50 PLGA
SPf66 4 700 50:50 PLGA
Insulin 5 808 50:50 PLGA
Neurotrophic factor 12 000 50:50 PLGA
BSA 69 000 PSA
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Validation

As derived above, values for D and Mwr, while not easily

quantifiable, are needed to solve the fundamental model

equations 1–5. Hence, to further develop the model, regressions

to multiple data sets8–21 were conducted to relate these parame-

ters to more readily attainable system properties. For these

regressions, values for the readily attainable model parameters,

Mwo and Rp, were taken from the published data sets.8–21

kCw(n) was calculated and averaged from several different

sources28,39–42 as described above. Data points documenting the

kinetics of the initial burst were not included for fitting, as the

model, in its current form, only predicts the magnitude of this

phase. (This current limitation is described further in the Discus-

sion section.) Properties for the experimental systems described

by these regressions are listed in Table 1.

Predictions

To test the model, regression-free predictions were made for

a variety of biodegradable matrix systems, each with published

controlled release data.16–18 Values for the parameters needed

to make these predictions were all taken from the litera-

ture16–18,21,35,39–42 and, where applicable, translated through the

correlations described above. The occlusion radius (Rocc) was

found by averaging the sizes of 10 occlusions, randomly selected

from scanning-electron or fluorescence microscopy images of the

microspheres.

The model’s predictive capabilities were explored by specifying

a priori conditions such as occlusion (Rocc) and matrix (Rp) sizes as

well as the mean polymer molecular initial weight (Mwo) and its

distribution. Specifically, occlusion size was varied from that of

a matrix with a homogeneously loaded, small molecule (Rocc < 1

nm) to a larger occlusion containing drug (800 nm), as could be

found in double emulsion formulation, Rp was set between 8 and

150mm andMwo was varied from7.4 to100 kDa. In addition, blends

of common polyesters were considered such as a 2:1 ratio of 7.4 kDa

50:50 PLGA and 60 kDa PLA or a 1:1 ratio of 10 kDa and 100

kDa PLGA. To provide continuity all predictions were generated

for a short peptide (900 Da) encapsulated in a spherical matrix.

Results

Validation

Solving the fundamental model equations requires values for D

and Mwr, which are difficult to directly measure. Fitting the
Mwo/kDa Rp/mm Ref.

98 75 20
110 35 (film) 21
41.8 19.5 19

13.5, 36.2 133, 276 16
18, 30 20 14

9.5 2.15, 3.5 17
100 0.6 13

6.6, 8 1.5 10
9.3 8.85 15

37 10 18

This journal is ª The Royal Society of Chemistry 2008



Fig. 3 Correlations for D and Mwr developed from regressions to exper-

imental data as referenced in Table 1. A) Plot of polymer molecular weight

at the onset of drug release (Mwr) vs. release agent molecular weight (MwA).

The data used to form this correlation comes from 50:50 PLGA systems.

B) Plot of D versus Rp. The line indicates the power expression,

D ¼ 2.071 � 10�19 Rp
2.275 which fits the estimations with an R2 ¼ 0.95.

Fig. 4 Regression-free prediction for peptide release from PLGA

microspheres.17 The Mwr for melittin (MwA ¼ 2.86 kDa) was calculated

at 4.68 kDa from the correlation in Fig. 3A. A) For the 9.5 kDa 50:50

PLGA microsphere (Rp ¼ 3.7 mm, Rocc ¼ 0.52 mm) D was correlated at

4.06 � 10�18 m2/s. B) The diffusivity (D) for 9.3 kDa 75:25 microspheres

(Rp ¼ 4.5 mm, Rocc ¼ 0.54 mm) was calculated at 6.34 � 10�18 m2/s.
model to release data for a wide range of agents generated values

for molecular weight of release (Mwr) that display a strong corre-

lation with agent molecular weight (MwA) as shown in Fig. 3A.

Fitting a power expression (y ¼ axb) to the plot of the regressed

diffusivity values versus particle size data (Rp), as suggested by

Sieppman et al.,32 resulted in a ¼ 2.071 � 10�19 and b ¼ 2.275

(R2 ¼ 0.95) (Fig. 3B). These correlations compile data from

multiple agents, polymer molecular weights and matrix sizes

(Table 1).

Predictions

Predictions of release data. Regression-free model predictions

for experimental data capture the magnitude of the initial burst,

the duration of the lag phase, the onset of the secondary burst

and the final release phase. Fig. 4 displays one set of predictions

for peptide release from various PLGA copolymer micro-

spheres.17 These predictions appear to extend to polymer

matrices other than PLGA, such as polyanhydride microspheres

(which, if sized less than 75 mm, are theorized to be entirely

hydrated for the duration of release).31 The prediction for BSA
This journal is ª The Royal Society of Chemistry 2008
release from 20:80 CPH:SA polyanhydride microspheres (Rp ¼
10 mm)18 illustrates this broader applicability (Fig. 5). In

addition, release predictions have also been made for matrices

formulated from a blend of two different polymers16 (Fig. 6).

All of these predictions serve to confirm that the model can

describe: 1) the magnitude (but not the kinetics) of the initial

burst from known occlusion size; 2) the duration of the lag phase

from known polymer initial molecular weight, degradation rate

and release agent molecular weight; 3) the onset of the initial

burst from the matrix crystallinity derived rate distribution;

and 4) the rate of subsequent release from the agent diffusivity

(D) correlated to the matrix size.

Theoretical predictions. By varying the readily attainable

model parameters within logical bounds for controlled release

formulations, it was possible to predict behaviors ranging from

a four phase release profile to zero order release (Fig. 7).

Changing the ratio of occlusion size (Rocc) to particle size (Rp)

(representing the fraction of matrix volume defined as ‘‘near

the surface’’) affected the magnitude of the initial burst

(Fig. 2). The ratio of the polymer molecular weight at release
J. Mater. Chem., 2008, 18, 1873–1880 | 1877



Fig. 5 Regression-free prediction for polyanhydride based microparticle

release of BSA. System is composed of 20:80 CPH:SA polyanhydride

(Mwo ¼ 18 kDa, Rp ¼ 10 mm and Rocc ¼ 1.54 mm).18 As the Mwr values

presented in Fig. 3A are specific to PLGA copolymers, the Mwr for this

prediction (940 Da) was acquired by fitting the model to data from

microparticles fabricated in an identical manner using polysebacic acid

(data not shown).18 In accordance with the correlation in Fig. 3B, D

was set at 3.67 � 10�17 m2/s.

Fig. 6 Regression-free predictions compared to small molecule release

data from blended polymer microspheres. Gentamicin (MwA ¼ 477 Da)

was release from microspheres (Rp ¼ 374.6 mm and Rocc ¼ 24.7 mm)

composed of a 1:1 blend of 13.5 and 36.2 kDa 50:50 PLGA (asterisks).16

As the Rocc could not be determined from the published SEM images, the

value of 24.7 mm was acquired from different sized gentamicin-loaded

microspheres fabricated under like conditions.16 The Mwr and D were

correlated at 13.3 kDa and 1.48 � 10�13 m2/s, respectively.

Fig. 7 Theoretical release profiles for obtained by varying model param-

eters: Rp, Rocc, Mwo, and kCw(n). The profiles progress from a typical

four phase release pattern (solid) to zero order release (dotted). For the

solid line a 13 kDa 50:50 PLGA matrix was considered with Rp ¼ 150

mm, and Rocc ¼ 23.5 mm. The dashed line was generated based on a 1:1

blend of 10 kDa and 100 kDa 50:50 PLGA (Rp ¼ 20 mm, Rocc ¼ 1 mm)

For the dotted line a 2:1 ratio of 7.4 kDa 50:50 PLGA and 60 kDa PLA

was considered in a single emulsion matrix with Rp ¼ 8 mm.
(associated with the molecular weight of the release agent) to its

initial molecular weight (Mwr/Mwo) and the mean reaction rate

(associated with polymer type) were collectively found to be

responsible for the duration of the lag phase. Lastly, modifying

the distribution of degradation rates (kCw(n)) or incorporating

an Mwo distribution (used to calculate the induction time

distribution for pore growth) influenced the rate of onset for

the secondary without affecting the initial burst. Tuning these

parameters in combination can minimize the magnitude of the

initial burst and the duration of the lag phase, while
1878 | J. Mater. Chem., 2008, 18, 1873–1880
simultaneously slowing the rate of onset of the second burst,

leading to a more linear release profile.
Discussion

In the effort to hasten the development of biodegradable matrix-

based, controlled release therapeutics, many models have been

developed to describe the release of specific classes of agents,

such as small molecules or proteins.22,24–29 In general, these

models require parameters that can only be obtained by fitting

controlled release data,26,27 or otherwise by carefully observing

controlled release experiments.28 In order to eliminate the need

for exploratory in vitro experiments, which investigate the drug

dosing schedules supplied by potential controlled release thera-

peutics, a model must be able to predict, without regression,

a broad range of release behaviors for a wide array of agents,

entirely from tunable matrix properties. To meet this goal, we

developed new methods of calculating the magnitude of the

initial burst release and the duration of the subsequent lag phase,

which allow these features to be predicted with commonly

known parameters regardless of the encapsulated agent type,

be it small molecule, peptide or protein. We also applied this

model to numerous sets of published data to generate values

for two correlations. These correlations complete a set of readily

attainable parameters for making regression-free predictions of

drug release from uniformly hydrated biodegradable matrices.

Finally, by varying the tunable parameters over rational bounds,

the range of potential release behaviors attainable with such

systems were explored.

The comparison of model predictions and experimental data

strongly suggests that the magnitude of the initial burst is

directly proportional to the amount of agent localized to occlu-

sions residing just inside the matrix surface. This region is defined

over the entire surface of the matrix to a depth of Rp � Rocc, such

that any occlusion localized to this region would abut the
This journal is ª The Royal Society of Chemistry 2008



matrix–reservoir interface. Prior models attributing the initial

burst to the amount of agent adsorbed to the matrix surface

required the fitting of empirical parameters for each new absorp-

tion/desorption drug type.22,28 Further, results from several

studies examining release from particles of uniform size and

surface morphology, but varying occlusion size (based on the

formulation method), suggest that it is unlikely that desorption

from the surface (with surface area being proportional to the

magnitude of the initial burst) is responsible for the initial burst

phase of release.14,15

Regression-free predictions of published experimental data

also suggest that the model consistently calculates the duration

of the lag phase for release agents ranging from small molecules

to proteins. Prior models have only accurately predicted the

duration of the lag phase for either small molecules26,27,29 or

proteins.28 The current model establishes a polymer molecular

weight associated with release (Mwr) and inversely correlates it

to agent molecular weight (MwA) (Fig. 3A). The concept that

small molecules can diffuse more readily through a higher

molecular weight polymer matrix than larger molecules is

supported by both diffusion flow cell studies36 and careful

analysis of release data.8–21 In addition, scanning electron

microscopy32,43 and other morphological44 studies have shown

that with degradation, PLGA matrices become increasingly

porous solids. The current model attributes this heterogeneous

degradation to matrix crystallinity, a mechanism also supported

by previous models.26,45

The model predicts the onset of the secondary burst (Fig. 1)

using expressions that have both similarities and fundamental

differences with those presented in the literature.25,28,31,36,45,46

Like prior models, the current work employs Fick’s second law

with an Deff dependent on matrix porosity. Saltzman and Langer

first derived this expression to predict protein release from non-

degradable porous polymers.25 Their lattice-based percolation

calculations yield an accessible porosity that fits a cumulative

normal distribution, a feature that our model is able to imple-

ment without estimated parameters. Recent controlled release

models based on stochastic methods have also successfully

employed a version of this equation to describe the egress of

small molecules from regressed degradation rate constants.26,27

The current work is, however, fundamentally different from

these prior models26,27 as it describes pore formation in biode-

gradable matrices entirely from known parameters and applies

to a broad range of agents, including small molecules, peptides,

and proteins.

As mentioned in the Results section, the diffusivity values

calculated for Fig. 3B are consistent with those found in the liter-

ature.27,28,32,36 These diffusivities display a power dependence on

the size of the encapsulating matrix, where D ¼ aRp
b. This

expression was originally developed by Siepmann et al.32 to

compensate for the size-dependent increase in degradation rate

that occurs in autocatalytic polymers such as PLGA.47 Further,

even though this power expression was only validated for lido-

cane release from 45 kDa PLGA microspheres,32 we demonstrate

that it applies nearly as well to the much broader range of matrix

sizes, polymer molecular weights, and agent types examined

herein (Fig. 3B, Table 1). The diffusivity coefficients ranging

from 10�14 to 10�16 m2/s calculated in prior models also support

this finding.25,27 Our regression-free predictions (Fig. 4–6) help to
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confirm that this power expression will relate D to matrix size

for many different polymers with an acid-based, autocatalytic,

first-order rate expressions, including both polyesters48 and

polyanhydrides.41

Even though the mathematical framework presented herein

provides broader applicability than prior models,22,24–29 it still

requires several assumptions. Specifically, the model considers

a water soluble agent that dissolves rapidly, relative to the dura-

tion of release, and that is loaded discretely in a bulk eroding,

biodegradable polymer matrix. Efforts are currently under way

to relax these assumptions in order to describe more complicated

systems. For instance, we speculate that systems exhibiting

slower kinetics during the initial burst may be subject to dissolu-

tion effects. Other efforts will focus on replacing the correlation

of D to Rp with a physically relevant degradation rate expression

that inherently accounts for size dependent autocatalysis to

provide greater accuracy when examining matrices with extreme

sizes (<100 nm or >1 mm). Furthermore, simple diffusion reaction

equations can be added to the current model framework, extend-

ing its predictive capabilities to slowly hydrating or surface

eroding systems, such as large polyanhydride implants. However,

even prior to these additions, the model still predicts published

data on agent egress from bulk eroding biodegradable matrices

(Fig. 4–6), which can provide a range of release profiles (Fig. 7).

Finally, having confirmed the model’s predictive capabilities,

the range of release behaviors that can potentially be attained

from bulk eroding matrices were explored. Predictions for such

matrices cover a continuum of behaviors ranging from abrupt

burst–lag–burst profiles to sustained linear release (Fig. 7). These

profiles satisfy the dosing schedules for numerous therapeutic

applications, such as the constant delivery of a chemotherapy

agent or the replication of multiple vaccine doses with a single

injection.4,5 Along with (1) the model’s applicability to a wide

array of agents and (2) its use of physically relevant parameters,

its ability to capture a broad range of release behaviors (3)

completes the set of three specifications required for any frame-

work that supports a rational design methodology.

Conclusions

In conclusion, we have demonstrated that a simple, deterministic

model can predict release for an extremely wide array of agents

encapsulated in bulk eroding biodegradable polymer matrices.

Two new correlations have been developed, allowing release

from the popular copolymer, PLGA, to be predicted entirely

from readily attainable parameters, representing tunable matrix

properties. Further, regression-free predictions from this model

provide strong support for the alternative explanations devel-

oped to account for the magnitude of the initial burst and the

duration of the lag phase. Future work will expand upon the

current model framework allowing for more accurate predictions

using an expanded set of polymer types and matrix geometries

including those that transition from surface to bulk erosion.

Glossary

Variables

CA ¼ Concentration of agent in the polymer matrix

CAo ¼ Initial concentration of agent in the polymer matrix
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D ¼ Diffusivity of agent leaving the matrix via pores

3(t) ¼ Time dependent matrix porosity

kCw(n) ¼ Pseudo-first order degradation rate distribution

MwA ¼ Release agent molecular weight

Mwo ¼ Average polymer initial molecular weight

Mwr ¼ Molecular weight of release

P(t) ¼ Cumulative fraction of agent retained in the matrix by

time t

R(t) ¼ Cumulative fraction of agent released from the matrix

by time t

Rocc ¼ Occlusion radius

Rp ¼ Matrix dimension(s) across which diffusive release

occurs, e.g. particle radius, or film thickness

t ¼ Time

t(n) ¼ Distribution of induction times for pore formation
Abbreviations

PLGA ¼ poly(lactic-co-glycolic acid)

PLA ¼ poly(lactic acid)

SA ¼ sebacic ahydride

CPH ¼ 1,6-bis-p-carboxyphenoxy hexane

PSA ¼ poly sebacic anhydride

BSA ¼ bovine serum albumin
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