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P H YSICAL REVIEW.

THE DYNAMICS OF CAPILLARY FLOK.

BY EDWARD W. WASHBURN.

SYNOPSIS.

Penetrati on of Liquids into Cylindrical Capillaries. —The rate of penetration
into a small capillary of radius r is shown to be: dl/dt P(r' + 4')/8rtl, where P is
the driving pressure, e the coeKcient of slip and g the viscosity. By integrating
this expression, the distance penetrated by a liquid flowing under capillary pressure alone

into a horizontal capillary or one with small internal surface is found to be the square
root of {yrt cos 0/2q), where y is the surface tension and 8 the angle of contact.
The quantity (y cos 8/2g) is called the coefficient of penetrance or the penetrativity
of the liquid.

Penetration of Liquids into a Porous Body.—(I) Theory. If a porous body
behaves as an assemblage of very small cylindrical capillaries, the volume which
penetrates in a time t would be proportional to the square root of (yt/g). (2) Experi-
ments with mercury, water and other liquids completely verify the theoretical deduc-
tions.

Dynamic capillary method of measuring surface tension is described. It possesses
certain advantages on the static method of capillary rise.

I . IN'TRODI CTION.

HE statical problems connected with the rise of liquids in capillary
tubes have been investigated on both the theoretical and the

experimental side, but the dynamical aspects of the subject do not appear
to have received much attention. Aside from the theoretical interest
attaching to the subject, the dynamics of capillary flow have certain
practical aspects in connection with the movement of water or oil through
soils, the impregnation of wood and other porous materials with liquids,
and the determinaticn of the porosity and true density of porous bodies,
as well as offering a new method for measuring the surface tension or
viscosity of a liquid. The present paper is a contribution to the theory
of the subject.
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2. THE VELOCITY OF CAPILLARY FLOW.

In the following development of the laws governing capillary flow

we shall simplify our problem initially to the extent of assuming that we

are dealing with a single capillary tube of uniform internal circular cross-

section throughout, the radius being r. The tube may be of any length

or shape otherwise. Such a tube may be represented by AB in I ig. I.
The tube is so arranged that the end 2 may, at any desired moment,

be placed in contact with a liquid having the depth k above the center
of the opening at this end. The end 8 may either be open to the atmos-

phere or the tube may be closed at this end and completely evacuated

previous to establishing connection with the liquid at A. In the former

case the pressure of the atmosphere will be neutralized but the tube will

offer a small though calculable resistance to the efflux of the air which

is displaced by the entering liquid. The equation covering this case will

therefore contain a sma11 correction term for the resistance of the air.

Fig. 1.

At the time 0 let connection be established with the liquid at the
point g. At some time tp thereafter, the meniscus will have penetrated
a distance lp at which point its velocity, which was initially very high
owing to the small resistance encountered, will have dropped to such a
value that the conditions of flow postulated in Poiseuille's law will have
been established and these conditions will thereafter persist. Previous
to the establishment of these conditions the velocity of flow will be
governed by the laws of hydraulics, and an experimental investigation
of this portion of the flow would perhaps disclose the two regions of
turbulent flow and of slip flow, respectively, whose laws have been
investigated by Reynolds, Sorkau' and others, and which are separated
from each other and from the PoiseuiHe region by rather pronounced
breaks. A theoretical and experimental study of the dynamics of
capillary flow in these two regions offers much of interest but will not be
entered into in this paper which will be confined to capillaries so small
that the Poiseuille region covers practically the whole of the flow.

' Sorkau, Phys. Z. , I4, 739 (IgI3).
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It has been found, by Osbourne Reynolds' that for a liquid of density D,
the distance lp is determined by the relation

2rD dl

where the constant k, a pure number, was found by experiment to have
the value 2ooo. If we combine this relation with the expression for

(dltdt) to be developed below (see equation 9) we obtain the relation

27
Pg + g. D h +—cos 0 r'D

lp
$q" ' Io (2)

from which the value of lp may be calculated. An extreme case will be
represented by such a liquid as water in a capillary which it wets, the
external driving pressure on the liquid being one atmosphere. For this
case the above equation becomes

$00
lp = 25 ' Io + r' cms.

and the values of lp for various values of r are shown in the following table.

P~ = external driving pressure.

~, in mm. IO-' ~ IO-2, IO 2* IO-4.

tn in mm.
(Pg = 1 atmos. ) . . 1.3 X 104 13 1.3 X 10 ' 1.5 X 10 ' 3 3 X 10-s1 1 X 10

ln 1n mm.
(Pg = 0). . . . 4 X 10 2 4 X 10 ' 4 X 10 n 4 X 10-s 4 X 10-10

From this table it is evident that l p is entirely negligible for very
small capillaries.

For such capillaries we may therefore assume Poiseuille's law which

obviously takes the following form, if we neglect for the moment any
air resistance,

~XI
d V = — ——- (r4 + ger')dt,

8pl

where d V is the volume of the liquid which in the time dt flows through
any cross-section of the capillary, l is the length of the column of liquid
in the capillary at the time t, q is the viscosity of the liquid and e its
coeAicient of slip, and ZP is the total effective pressure which is acting
to force the liquid along the capillary.

At the end of any time, t, the liquid will have gone a distance, l, along
' Reynolds, Scientific Papers, Volume 2, pp. 563 and 535.
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the capillary and the meniscus will have arrived at some point, M, where

it is moving with the velocity (dl/dt). To calculate the magnitude of
this velocity we proceed as follows: In equation g we can put

d V = ~r'dl,

thus giving us the following expression for the velocity

dl ZP
sr2. q

l(r +we~) (6)

We have now to find an expression for ZP. The total driving pressure
will be made up in general of three separate pressures, the unbalanced

atmospheric pressure, P&, the hydrostatic pressure P&, and the capillary
pressure P, . P& we shall take as constant. For P& we can evidently
write (see Fig. I}

P& ——h g D —l, g Dsing,
where l, is the linear distance from A to M, D is the density of the liquid
and g is the acceleration due to gravity. Finally for P, we have

='7P, = —cos8,
r (8}

where 7 is the surface tension of the liquid and 0 is the angle of contact.
Summing up and substituting in equation 6 gives us the following law

for the velocity of penetration,

27
P~ + g D(h, —l, sin P} + —cos 0 (r' + ger)r

dt 8gl

INTEGRATION OF THE EQUATION.

In equation 9, l„g, e, and 8 will be in general functions of t, and 8 will

perhaps also be a function of (dl/dt) and of the pressure gradient in the
column of liquid. For any given known conditions, l, and P could, of
course, be determined and expressed as functions of l.

In the illustrations which follow we shall, however, assume P, 8, and e,

to be constants and on integrating equation 9 for these conditions we
find the following integral:

(r'+ 4er)D g sin ft+ l

27
P,~+D g h+ —cos 0

r
logeD.g sin P

P +Dg(h —ising)+ —cos 8
27
r

27Pg+D g h+ —cos 0
r

(Io)
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The two limiting cases corresponding to P = 9o' and P = o' oR'er

some special interest. For the former case the integral reduces to

(r'+ 4er)D-g t+t
2yP~+D. g h+ —cos 0
r

log, I—
D'g

Dg 3

2'y
P~+D g h+ —cos 0

r

For the latter case the integral becomes indeterminate, but a second

integration for this case gives us

2

~

27
P~ + D g h+ —cos 0 (r-'+ 4er)tr

)2 (I2}

It may be noted here that with capillaries open at both ends, P~ ——o
and equations II and I2 assume the following forms:

(r'+ 4er)D g

8(q —qg)
2'y—(q —q~) D g. h +—cos 0 + D g q„t~

D g (q —g~)

loge I
D g. l

(I Ig)
27D'g h+ cos 0
r

and
27D g h+ —cos 0 (r'+ 4&r)2 'g,glrgv fl'+ ----'----I = — --- --

~ —
nA 4(~ —v~}

(I2a}

where q& is the viscosity of air and l~ is the total length of the capillary.

4. VERTICAL CAPILLARIES ) EXPERIME'NTAL.

For a liquid which wets the capillary equation IIa becomes,

log, I ——-- -——„-, (I3)

where Ah is writtenin place of 2y/r D g. In order to test this equation
the experimental arrangement shown in Fig. 2 was employed. The bore
of the glass capillary was not examined for uniformity but its average
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Fig. 2

radius calculated from the weight of the mercury thread which filled it
was o.oI45g cms. Lengths were measured with a cathetometer and were

as follows: k = 5I.38 cms. ; 1 = 58.23
cms. ; Ak (the capillary rise) = Io.oI
and 9.9o cms. , two direct measurements
as determined by the sharc method at
two different points in the tube; and

l~ = 96 cms. The distilled water em-

ployed was from the laboratory supply
system and the temperature was room
temperature, 3o' ~ o.2'. The time of
rise through the distance l, as observed
with a stop-watch in several successive
experiments was 4o.2 ~ o.2 seconds.
Taking g~

——o.oooI8, q = o.oo8oo, g =
98o.I, D30 = 0.9956, and calculating Ak

and y from equation (I3) we find Ah=

9.9o and y = 7o.2 which agrees with
the accepted value 7I.o3 (Landolt-Born-

II

stein-Roth) within the accuracy of the
above measurements. No great accu-
racy is claimed for these measurements

which were made for illustrative purposes only.

5. HORIZONTAL CAPILLARIES; EXPERIMENTAL.

An experimental study of equation I2a was made using mercury in

open glass capillaries at room temperatures, and varying k, r and t.
The results for jt: = 95 cms. are shown in Fig. 3 for two capillaries of
different radii. The curves shown in this figure are graphs of the the-

oretical equation {I2a) using values of q (= o.oI52), y (= 44o) and D
given in the literature. The value of 0 was computed by means of the
observed points on the upper curve and found to be II2'. This value

was used in plotting both curves.
The data obtained by experiment are indicated by small circles in the

figure and it is evident that these experimental values are in good agree-
ment with the theoretical curve. The apparent deviation of some of
the points in the neighborhood of h = o is not significant, as under these
conditions sticking friction developed and it was necessary to tap the
capillary with the finger in order to keep the meniscus in motion. The
observed times of flow for these points were therefore known to be some-

what too long. The measurements were not accurate enough to detect
with certainty any variation of tt with 0 or dl/dt.
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A number of experiments with different liquids (benzene, kerosene,
alcohols, esters) for which values of q and y were given in the literature
demonstrated also the validity of equation I2a with respect to variations
in these two variables.

The relation between t and t was also found to hold within the accuracy
of the measurements in numerous experiments with horizontal capillaries

-2' -SOP
h in wn pf PVigii'gr

Fig. 3.

wetted by the liquids. ' In experiments with such liquids it is necessary
after each run to elevate the capillary for drainage in order to insure the
presence of a thin film of liquid on the wall. If too much liquid is left
in the capillary, the observed times of How wi11 be too short while if the
wall is not completely wet the value of 8 will be greater than zero. The
percentage differences between the observed times of How with wet and
dry tubes respectively, were found to be smaller the smaller the value of r,
so that for sufficiently small capillaries the speed of wetting brought
about by the diffusion of vapor ahead of the liquid might be sufficient to
maintain the angle 8 practically zero. Further evidence on this point is,
however, needed.

6. THE FLOAV OF LIQUIDS UNDER CAPILLARY PRESSURE.

In discussing the rate of penetration of a capillary by a liquid moving
under its own capillary pressure we shall consider only the two limiting
cases of vertical capillaries and horizontal capillaries, respectively, the
equation for the intermediate cases being obvious. The case under
consideration is equivalent to assuming that I'~ + D.g h may be
neglected in comparison with (zyjr) cos 0. In this discussion we shall

' Bell and Cameron, Jour. Phys. Chem. , zo, 659 (zpo6), deduced the relation, I2/t = const.
for a liquid moving through a horizontal capillary under a constant driving pressure and
demonstrated its validity by experiments with water, alcohol, and benzene.
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also write e = o, which is the case for all liquids which wet the capillary
and has been shown experimentally to be also true for mercury in glass.

Case I. VerHcat Ca&ttaries. —For vertical capillaries with small in-

ternal surfaces the logarithmic term in equation Io may be expanded
and if we reject all the terms of the series beyond the term containing P,
equation I.o becomes identical with equation (I4) for horizontal capil-
laries and will be discussed under that head.

Case 2. IIorisontaL Capillaries. —Equation I2 for this case becomes

(I4)

air resistance being excluded or neglected. The corresponding equation
for the rate is

dt rp—= ——cos 8,
dt q 4t

(I4a)

or in words, the rate at which a liquid penetrates any horizontal capillary
(or any capillary with a small surface), under its own capillary pressure
is directly proportional to the radius of the capillary, to the cosine of
the angle of contact, to the ratio of the surface tension to the viscosity
of the liquid and inversely proportional to the length already filled by
the liquid.

The quantity y/s (cos 0)/2 measures the penetrating power of a liquid

and will be called the coePcient of penetrance or the penetrativity of the
liquid. Its dimensions are obviously those of velocity. Stated in words,
the penetrativity of a liquid is equal to the distance which the liquid
will penetrate a capillary tube of unit radius in unit time, when flowing

under its own capillary pressure. The presence of the factor cos 8 makes
the penetrativity, in general, a function also of the nature of the material
composing the capillary. Thus the penetrativity of mercury into a glass
capillary is obviously a negative quantity. The penetrativity of a liquid
which wets the capillary is otherwise independent of the material com-

posing the capillary and is simply equal to —, the ratio of its own surface
tension to its viscosity.

The relative penetrativities of two liquids are most easily compared
with the aid of a coiled capillary which may be immersed in the liquid
during the measurement. Time of flow is the only measurement required
in using such a penetratimeter.

7. THE RATE OF PENETRATION OF A POROUS BODY BY A LIQUID.

For purposes of calculation we will assume that the penetration of the
pores of a body by a liquid in which it is immersed may be taken as
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equivalent to the penetration of e cylindrical capillary tubes of radii
r&, r&, . . . , r„and we will ask ourselves the question; How much liquid
will have entered the pores of the body at the end of the time t? For
any one pore the volume which enters will obviously be

1/2

V= ~r2i=
2 ~1/2 r

and hence the total volume which penetrates all the pores will be

1/2

V = ~-"r'l = &'/'r, P +—
2 r/'" r

(I5)

(Iga)

where PE is the total external pressure behind the liquid.
For a given body under constant driving pressure this equation has

the form

V= k (I6)

and for capillaries so small that PE is negligible in comparison with 2y/r
this can also be written

V=k'

where k' is independent of the nature of the liquid, that is, the degree of
penetration is proportional to the square root of the time of soaking and
to the square root of the ratio of the surface tension to the viscosity.

If the pores of the body cannot be taken as equivalent in their behavior
to cylindrical pores, equations I6 and I7 would, of course, not be applic-
able. If the cross-section of a pore changes with its length and especially
if the pore contains an enlargement or ends in a pocket, the above equa-
tions of course would not apply. Furthermore these equations would
in all probability not apply to the filling of micro-pores, that is, pores
with diameters approaching the molecular diameter of the liquid.
Whether or not, therefore, equation I7 applies to the absorption of a
liquid by a porous body in a given case could only be determined by
experiment.

Some results obtained by Cude and Hulett' on the rate of penetration
of charcoal by water give us an opportunity of making a comparison of
the above relation. The comparison is shown in Fig. 4. It is evident
from this figure that the linear relation holds good within the experi-
mental error for the initial period of penetration. Whether the later
deviation corresponds to the complete filling of all except the micro-
pores, or whether it is due to the slower filling of enlarged pores or pockets

' Cude and Hulett, Jour. Amer. Chem. Soc., 42, 39I (x920).
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cannot, of course, be determined although the former supposition seems

the more probable in this instance.
It is of some interest to note that if a porous body consists of n cap-

.Qk!0 ~ /
/

//

/P /E
Vin cu mm per prom

Fig. 4.

The velocity of penetration of charcoal by water. Data by Cude and Hulett. Curve A

from their Table t. , curve B from their Fig. 8.

illaries of radius r and length I, each of these quantities may be calcu-
lated, if one of them is known.

8. THE MEASUREMENT OF SURFACE TENSION BY THE

DYNAMIC METHOD.

Horizontal capillaries are perhaps the most convenient to use for this

purpose, although, by using a vertical capillary immersed some distance
in the liquid and allowing the liquid to drop from a point some distance
beyond its equilibrium position, it should be possible to obtain very good
results. With horizontal capillaries under practically zero head, equa-
tion I2a shows that the accuracy with which r can be measured is prac-
tically determined by the accuracy with which q is known. The factors
l and t can be made as large as desired and the value of r called for is the
average value for the whole tube. In this respect the dynamic method
is superior to the static where the height of the capillary rise for a given

tube is not under the control of the operator, and where the value of r
involved is the particular value at the position occupied by the meniscus
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when equilibrium is reached, a value rather difficult to determine
accurately.

The writer is indebted to Dr. E. N. Bunting of this department for
valued assistance in the experiments reported in this paper. The writer
also recalls with much pleasure his discussions of the subject of capillary
How with his colleague, Dr. Eric K. Rideal.
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