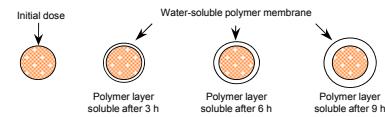


Chapter 9


Mechanisms of Controlled Release

Mechanisms of Controlled Drug Release

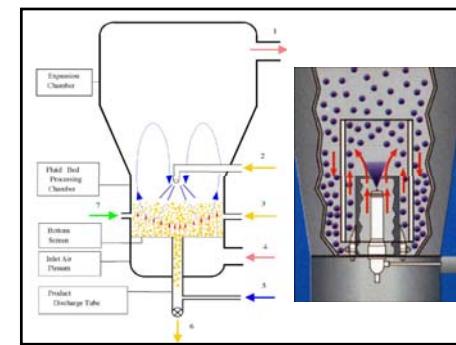
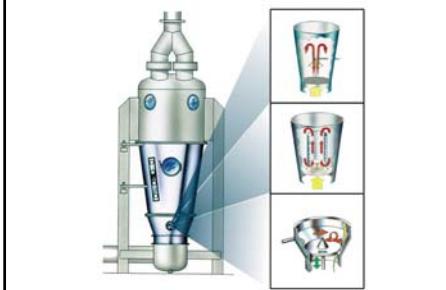
Physical Mechanisms

- I. Dissolution
 - A. Encapsulated Dissolution (Reservoir) System
 - B. Matrix Dissolution System
- II. Diffusion
 - A. Reservoir Devices
 - 1. Nonporous Membrane
 - 2. Microporous Membrane
 - B. Monolithic Devices
 - 1. Nonporous Matrix
 - a. Monolithic Solution
 - b. Monolithic Dispersion
 - III. Osmosis
 - IV. Ion-Exchange
- V. Chemical Mechanisms
 - VI. Enzymatic Degradation

Encapsulated Dissolution (Reservoir) System

Dissolution of the polymeric material is the key to this mechanism; all of the polymers used must be water soluble or degradable.

Biodegradable polymers are hydrophobic and thus water insoluble; they break down into smaller units that are biocompatible.



Encapsulated Dissolution (Reservoir) System

With a series of polymer thicknesses, the drug is released at discrete time periods—a repeat action dosage form that may not produce zero-order release.

With a spectrum of different polymer membrane thicknesses, zero-order release is possible.

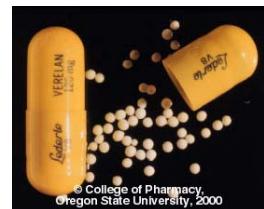
Coated particles may be directly compressed into tablets or filled into capsules.

Fluid-Bed Wurster Coater

Spansules

Resaid® (phenylpropanolamine & chlorpheniramine)

Green, red, and white spherical beads within a capsule. Each color of beads represents a different coating level. Some beads release the drug immediately. Some beads release after a short while, some after a longer while.


Enteric Coated Prilosec® 10 mg

The beadlets contained in this capsule are large and irregular in shape when compared to other products. The granules are enteric coated because omeprazole is rapidly degraded in acid media. Absorption of omeprazole begins after the granules leave the stomach.

SODAS Verelan® SR (verapamil) Spheroidal Oral Drug Absorption System

Small, visually identical white beads within an opaque capsule. A proportion of the beads is uncoated for bolus effect. The remainder consist of a drug core coated with rate-controlling polymers. Drug release is independent of food and pH.

Naprelan (Naproxen Sodium)

This system is a combination of the SODAS technology and the Hydrodynamic Cushion. This system allows the SODAS beads to be placed in tablet form providing for a higher dose than can be obtained from capsules. A coating prevents disruption until it reaches the stomach where the tablet disintegrates and the beads are released into the GI tract. (30% of the drug is initially released within 30 min and the remaining is controlled-release over 24 h).

Plendil® 10 mg (felodipine)

Product is very similar to the hydrophilic matrix tablets except, only the surface of the tablet hydrates. As the drug is leached out of the surface of the tablets, the unhydrated portion of the tablet acts as a drug reservoir. The tablet slowly erodes away until all of the tablet is dissolved.

Tylenol® ER (acetaminophen)

Product is a bi-layered tablet consisting of 325 mg of immediate release acetaminophen and 325 mg of sustained release acetaminophen. The immediate release portion of the tablets rapidly disintegrates in water leaving a hydrophilic matrix.

Matrix Dissolution System

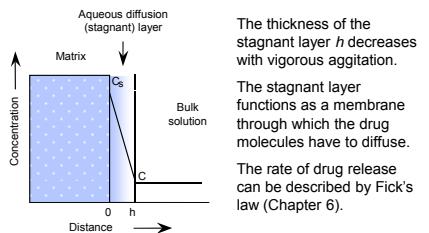
The drug is homogeneously distributed throughout the polymer matrix. As the polymer matrix dissolves, drug molecules are released. As the size of the matrix decreases, the amount of drug released decreases. Drug release is nonzero-order.

Matrix Dissolution System

Micromatrix Systems

Small, spherical matrix systems prepared by microencapsulation (Chapter 7).

Macromatrix Systems


Tablets consist of an inner core, and outer coat, and a film coat.

Claritin® D (loratadine and pseudoephedrine)

This product provides 5 mg loratadine and 60 mg of pseudoephedrine in an immediate release layer. The inner layer is then a second dose of 60 mg pseudoephedrine that is coated to release after 6 h.

Dissolution Rate of Homogeneous Matrix System

Dissolution Rate of Homogeneous Matrix Systems

Noyes-Whitney Equation

M = total amount of drug dissolved

S = surface area of the exposed matrix

D = diffusion coefficient of the drug in the medium

$$M = \left(\frac{D \cdot S}{h} \right) \cdot (C_s - C) \cdot t$$

$$\frac{dM}{dt} = \left(\frac{D \cdot S}{h} \right) \cdot (C_s - C)$$

For small matrices consisting of uniformly sized particulates, it is much more convenient to consider the total weight.

Hixon-Crowell Cube Root Law

For small matrices consisting of uniformly sized particulates, it is much more convenient to consider the total weight.

Using the density (volume/weight) term in the Noyes-Whitney equation:

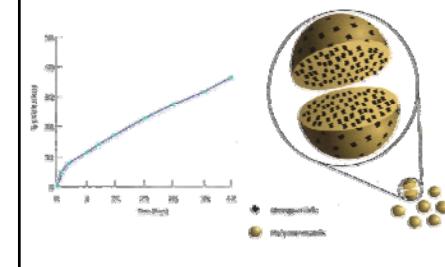
$$M_0^{\frac{1}{3}} = M^{\frac{1}{3}} = kt$$

where M_0 is the original mass of the particles and k is the cube root dissolution rate constant

Biodegradable Polymers

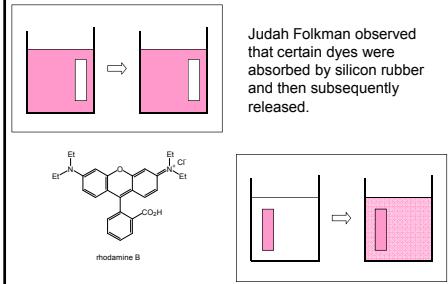
For oral delivery, there isn't a problem if the polymer does not degrade completely since there isn't a removal problem.

For implanted devices, it would be best if a second surgery is not needed to remove the device once all of the drug has been released.


Thus, the polymers for implants must break down to nontoxic monomers that are eliminated in the blood stream.

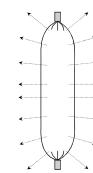
Biodegradable polymers may be water soluble or not.

The most widely used biodegradable polymers are


- Poly(lactic acid)
- Poly(glycolic acid)
- Poly(lactic-co-glycolic acid)

PLGA Protein Delivery Microparticles

Diffusion-Controlled Drug Release


Serendipity

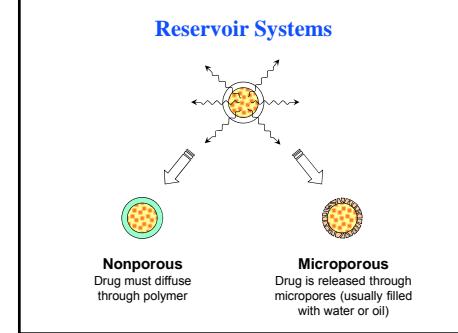
Diffusion-Controlled Drug Release

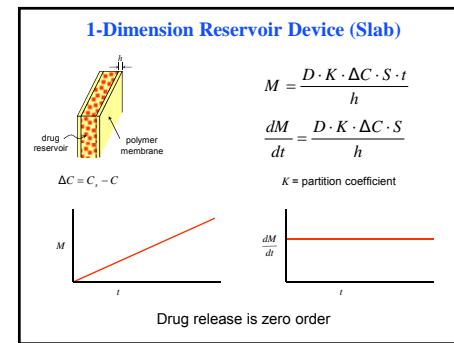
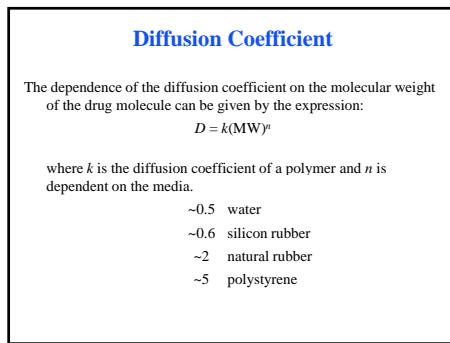
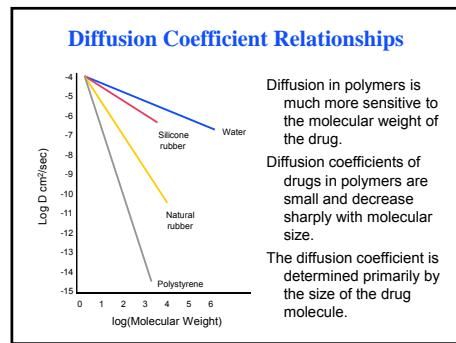
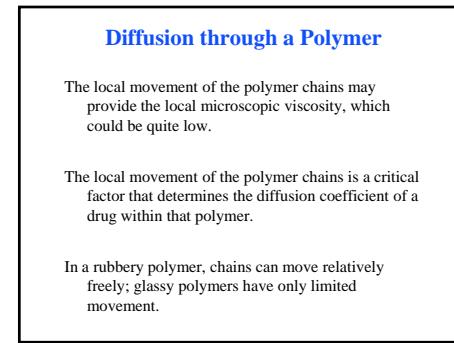
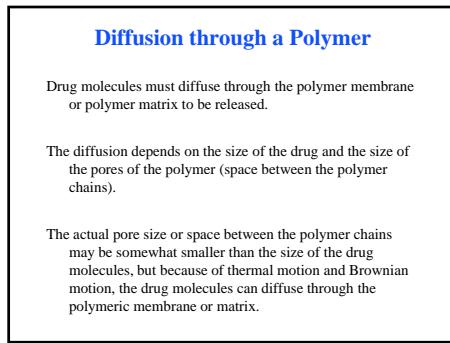
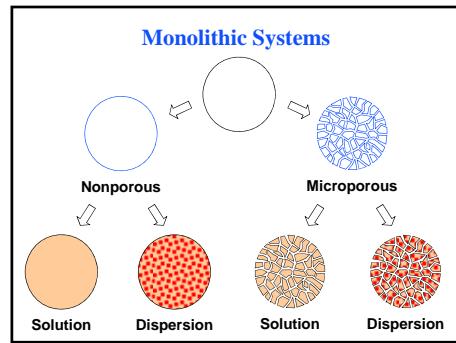
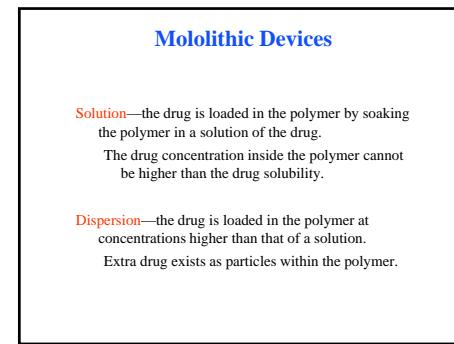
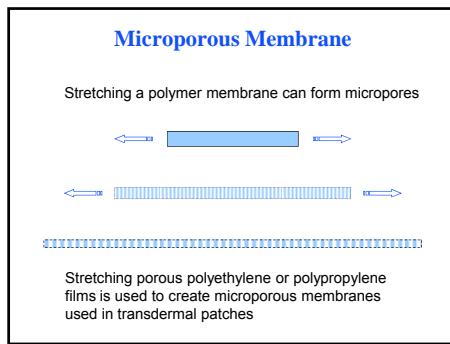
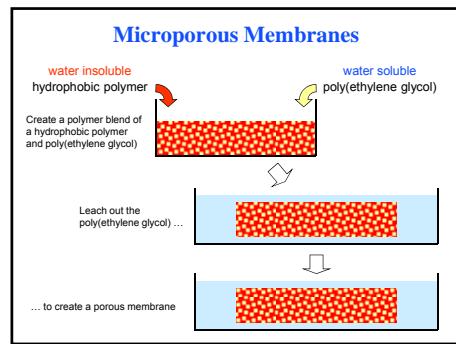
In 1963, Folkman and Long systematically studied the slow release of drugs, such as digitoxin, from the inside of silicon rubber tubing.

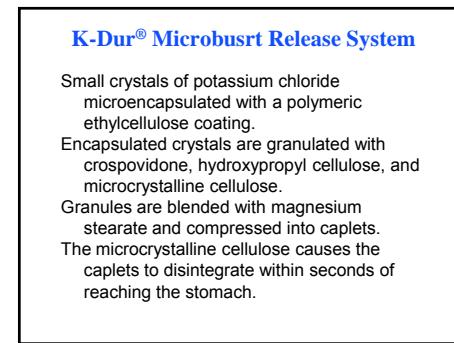
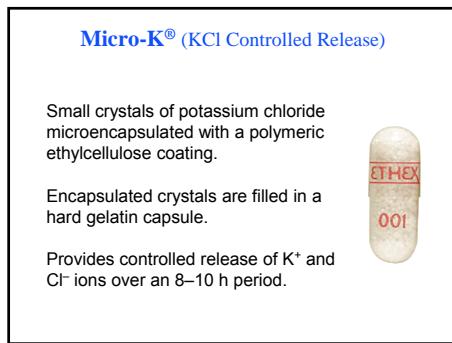
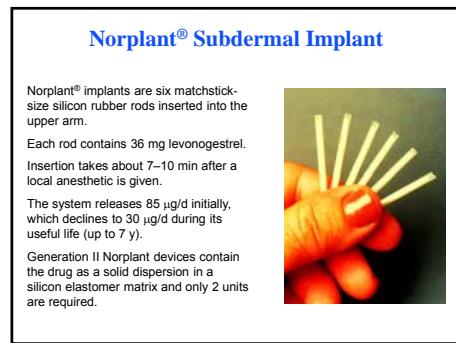
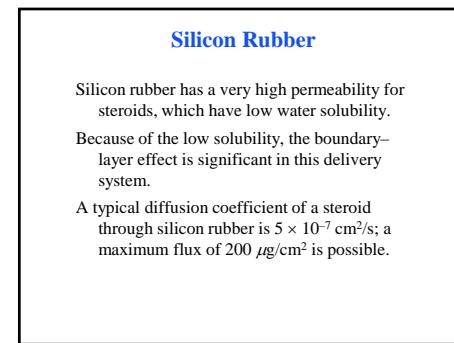
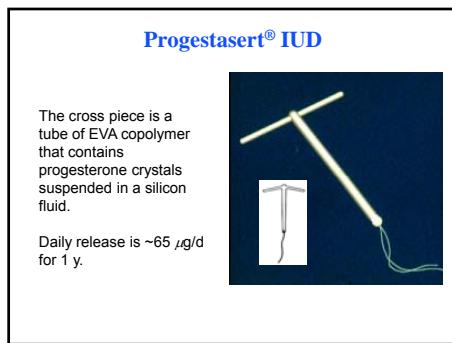
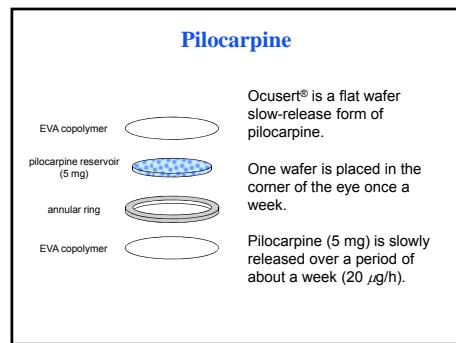
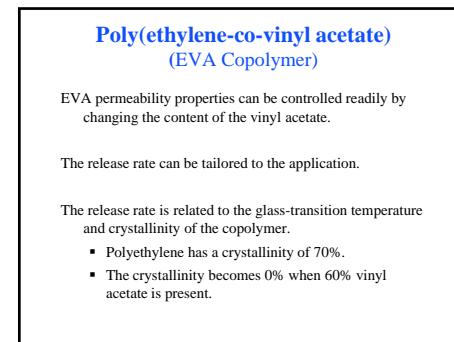
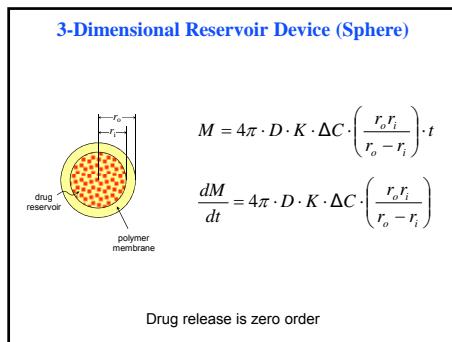
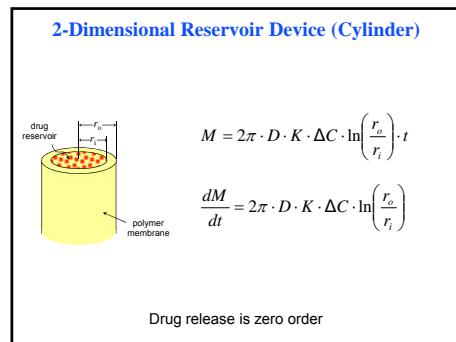
In 1966, other researchers showed that when progesterone-loaded silicon rubber tubing was implanted in cattle, it was able to prevent the animal from becoming fertile for more than a year.

Polymers

Cellulose (Ethylcellulose)
Chitin
Collagen
Nylon
Poly(alkylcyanoacrylate)
Polyethylene
Poly(hydroxyethyl methacrylate)
Poly(hydroxypropylethyl methacrylate)
Poly(methyl methacrylate)
Poly(vinyl alcohol-co-methacrylate)
Poly(vinyl chloride)
Polyisobutene
Polyurethane
Silicon rubber


Diffusion-Controlled Drug Release

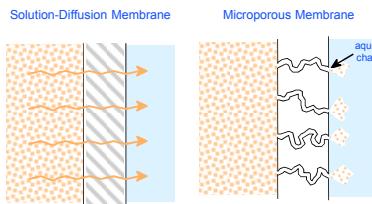









Drug molecules need to diffuse through a polymer membrane or matrix to be released.










Devices can be divided into two classes:

- Reservoir—the drug is surrounded by a polymer membrane
- Monolithic—the drug is distributed throughout a polymer matrix

Reservoir Systems

Theo-24®


First commercial product for 24-h theophylline therapy.
Developed by Searle, now sold by UCB Pharma, Inc.
Consists of small sugar and starch beads on which a thin coat of theophylline is applied.
The coated cores are then coated with an ethylcellulose layer with various thicknesses.
The beads are filled in hard gelatin capsules.
As the insoluble ethylcellulose coat slowly erodes, the soluble theophylline is released through the coating.
The starch swells and helps push the drug out.
The dissolving sugar helps carry the drug through the polymer layer.

Microporous Membranes

Reservoir Devices with Microporous Membranes

Diffusion through **nonporous**, homogeneous, dense polymer (**solution-diffusion**) membranes occurs between polymer chains
Diffusion through **microporous** membranes occurs through liquid-filled pores
Water-filled pores for hydrophilic drugs
Oil-filled pores for hydrophobic drugs

Reservoir Devices with Microporous Membranes

Microporous Membranes

Micropores typically are not straight and thus have longer path than thickness of membrane
Drugs must diffuse through a longer distance than membrane thickness
The tortuosity τ must be considered
The greater the tortuosity, the longer the path

Microporous Membranes

When drug is released only through micropores, the effective surface area of the membrane for drug release is greatly reduced
The fractional volume of membrane pores must be considered using the porosity ε parameter

Microporous Membranes

Drug release through nonporous membranes:

$$M = \left(\frac{SDK}{h} \right) \Delta Ct$$

Drug release through microporous membranes:

$$M = \left(\frac{\varepsilon S D K}{\tau h} \right) \Delta Ct$$

porosity — related to surface area
tortuosity — related to thickness

Microporous Membranes

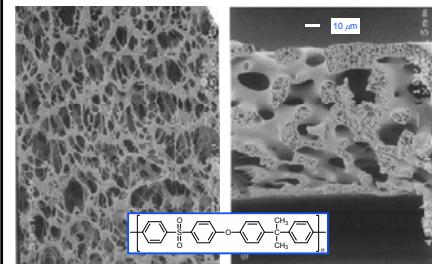
Diffusion through pores may occur through the liquid in the micropores

Diffusion coefficient D_0 of liquid
Partition coefficient K_0 of liquid

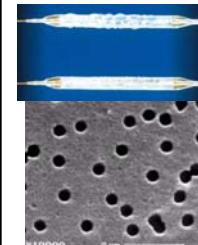
$$M = \frac{\varepsilon}{\tau} \left(\frac{S D_0 K_0}{h} \right) \Delta Ct$$

For water-soluble drugs through aqueous channels, $K_0 = 1$

Microporous Membranes


Microporous membranes may be prepared by making hydrophobic polymer membranes in the presence of water-soluble materials [e.g., poly(ethylene glycol)]
After membrane is formed, the water-soluble materials are removed by dissolving them in aqueous solution

Microporous Membranes



This microporous membrane was made by repeatedly stretching polypropylene film at high and low temperatures. The process creates minute, parallel rips in the film, spanned by microfibers that define an average pore size of several hundred Ångströms.

Microporous Membranes

Microporous Membranes

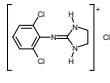
- An ultra-thin-walled PET balloon can be converted to a microporous membrane with hole sizes ranging from submicron to a few microns in diameter
- Hundreds of thousands or even millions of holes can be placed in a single balloon
- The pore size may be controlled precisely, enabling very small amounts of a drug to be infused over a well-defined area as large or as small as required
- Although these balloons contain millions of micro pores they are strong

Celgard®

Microporous polypropylene film (Celgard®) are used in disposable butane lighters

The microporous membrane replaces a costly and complex mechanical valve assembly used to maintain constant flow and flame height, regardless of ambient pressure and fuel level

Scopolamine Transdermal Patch


Transderm Scop® (1.5 mg scopolamine) ~ \$5 per patch
Dramamine (50 mg dimenhydrinate) \$7.33 / 24 tablets

- Clinically proven to prevent motion sickness
- In clinical studies, 5 out of 6 people did not report drowsiness
- Longer lasting, one patch lasts up to 3 days compared with a Dramamine tablet which only lasts up to 6 hours

CATAPRES-TTS®

- Clonidine, the active ingredient of CATAPRES, is active in very small doses (in the microgram range)
- The plasma half-life of clonidine is 10–20 h
- The half-life does not depend on the age or sex of the patient but is clearly prolonged in patients with severely impaired renal function
- The protein binding, found to be 30–40% *in vitro*, has no influence on the pharmacokinetics

Backing	Programmed Delivery <i>In vitro</i> dose (mg)	Chloride content (mg)	Size (mm)
Clonidine Reservoir	0.4 mg	2.5	2.5
Clonidine Reservoir	0.5 mg	3.0	3.0
Adhesive	0.5 mg	2.5	10.5
Protective Peel Strip			

Celgard®

Parameter	Range
Porosity	20-60 %
Hole Size	0.02 x 0.08 mm to 0.2 x 1.5 μ m
Thickness	8-50 μ m
Permeability, Gurgling	5-100
Moisture Vapor Rate	4000-8000 g/m ² /day at 1 atm
Water Flow	20-400 L/m ² /hr at 10 psig
Strength	15-19 kip/in
Tensile Strength	1.3-2.2 kipd
Electrical Resistance	> 2.0 ohms/cm ²

- Microporous polypropylene film (Celgard[®]) is used to control insect pests (e.g., Japanese beetle, whitefly, house fly, apple maggots)
- Active ingredients (e.g., hormones) can be released at a constant, predictable rate

Transderm-Nitro®

- Drug reservoir is a dispersion of nitroglycerin-lactose tritrate (i.e., suspension) in silicone oil
- The drug release from reservoir is controlled by microporous EVA (ethylene-vinyl acetate) copolymer
- Nitroglycerin is delivered at dosage rate of 0.5 mg/cm²/d for relief of anginal attacks

O=[N+]([O-])C=C([N+]([O-])=O)C nitroglycerin

Release Rate (mg/h)	Total NTG Content (mg)	Surface Area (cm ²)
0.1	12.5	5
0.2	15	10
0.4	50	20
0.8	100	40

Estrogen Replacement

Oral administration often results in nausea, vomiting, headache, vaginal bleeding, and breast tenderness

Transdermal delivery eliminates most of these side effect

Skin does not metabolize estradiol

Only 5% of oral dose is needed to achieve the same blood plasma levels

Estrogen Replacement

Estrogen replacement is known to increase the risk of

- breast cancer
- uterine cancer
- hyperplasia or neoplasia
- gallstones
- blood clots
- high blood pressure

Estrogen Transdermal Patches

Oc1ccccc2c1c(O)c3ccccc3c2 17 β -estradiol

Twice a week

Initially produced utilizing a skin absorption enhancer

Drug reservoir system of estradiol and ethanol gelled with hydroxy-propylcellulose, an ethylene-vinyl acetate copolymer membrane for zero-order release, and an adhesive formulation of light mineral oil and polyisobutylene

Fluoride Releasing Device

Hydrophilic polymer matrix containing NaF or Na₂PO₄F is coated with EVA (ethylene-vinyl acetate) copolymer by dip-coating in an EVA/chloroform solution

A thin button can be glued to one of the back molars for the prevention of tooth decay

Controlled release of fluoride for 6–12 mo is possible.

Inderal® LA

Inderal® LA (long acting) uses polymer coated controlled-release diffusion technology to achieve 12-h release of therapeutic levels of propranolol HCl for the treatment of hypertension

Inderal® LA consists of small beads contained in a gelatin capsule

Each bead is coated with a porous membrane (ethylcellulose, hydroxypropylmethylcellulose, and plasticizer)

Polymer coating give a density > 1 and keeps the dose in the upper alimentary canal for a longer time

Cardizem® CD

CC1(C)CC2=C(C=C1)SC3=C(C=C2)C(=O)C(=O)N3C[C@H](C)Cl diltiazem HCl

Cardizem® CD (vasodilator) is a once-a-day formulation based on the spheroidal oral drug absorption system (SODAS) technology

Consists of two populations of sustained release beads that differ only by the thickness of the polymer (ethylcellulose)

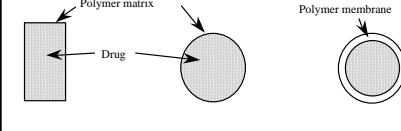
The ethylcellulose coating also contains water-soluble polymers that dissolve to create pores in the membrane

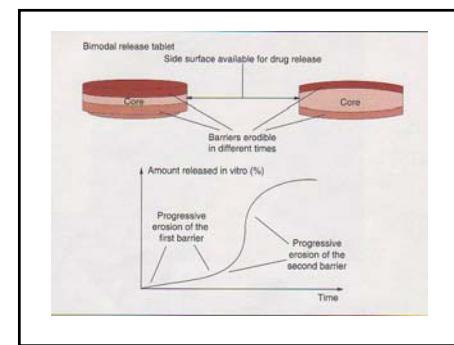
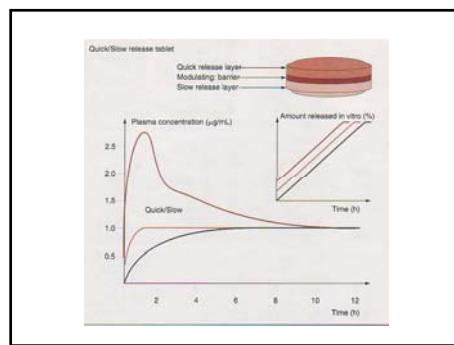
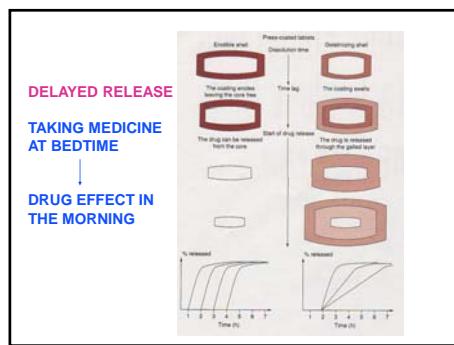
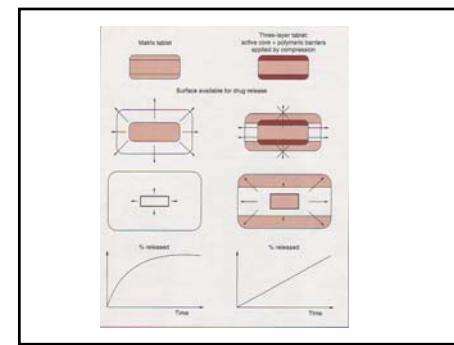
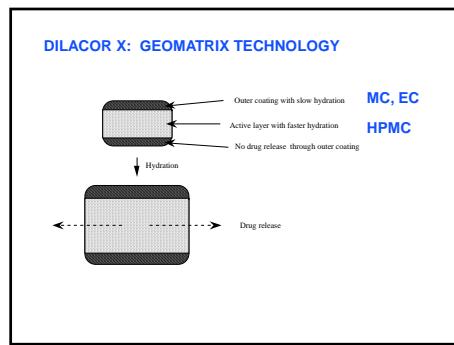
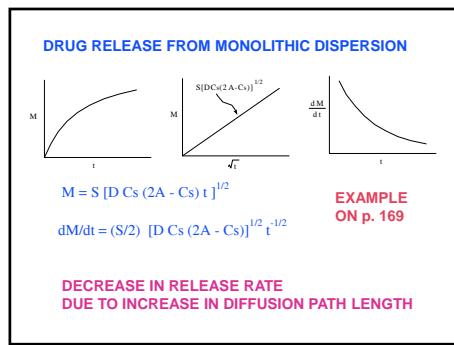
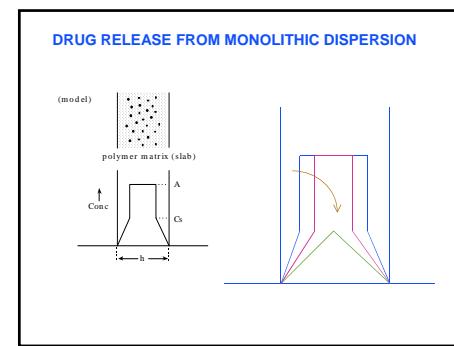
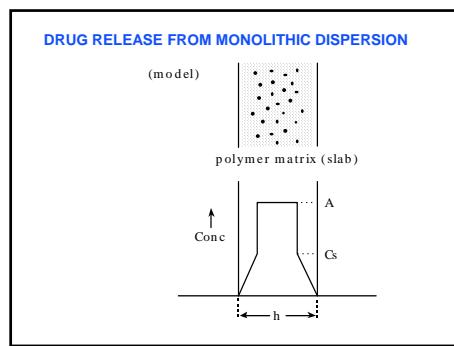
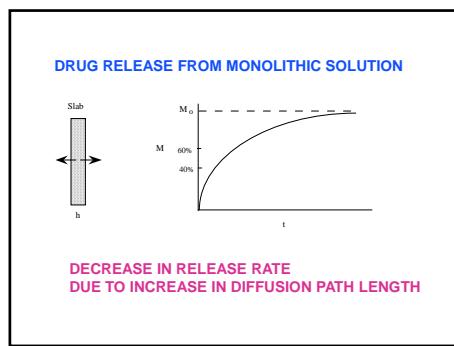
120mg, 24 h
180mg, 24 h
240mg, 24 h
300mg, 24 h

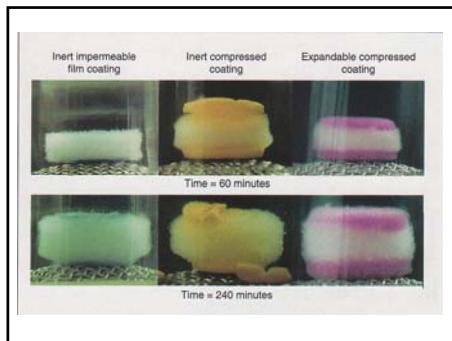
MONOLITHIC DEVICES

PREPARATION

1. CROSSLINKING OF POLYMERS
CHEMICAL AND PHYSICAL CROSSLINKING
2. MOLDING
RUBBERY STATE AT HIGH TEMPERATURE
3. SOLVENT CASTING
COMMON SOLVENT FOR POLYMER & DRUG

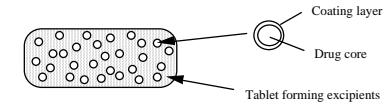

MONOLITHIC DEVICES

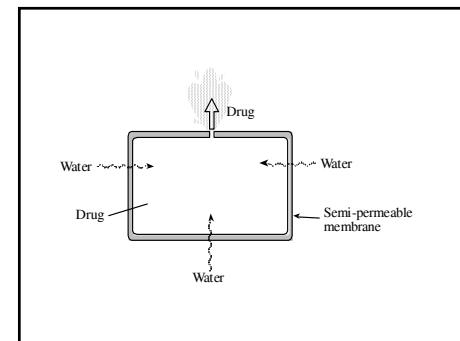
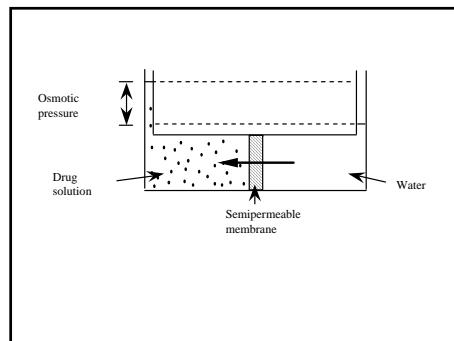
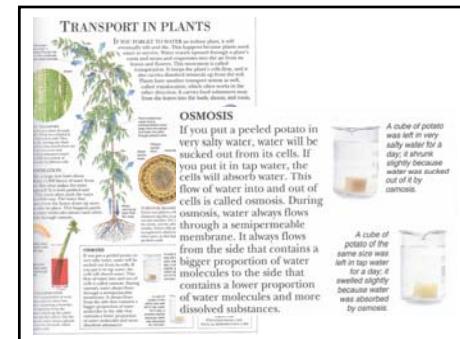









Polymer matrix

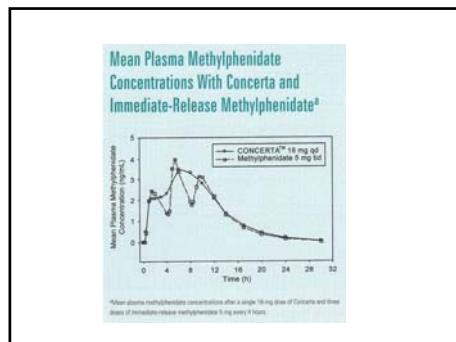

Drug

RESERVOIR DEVICE

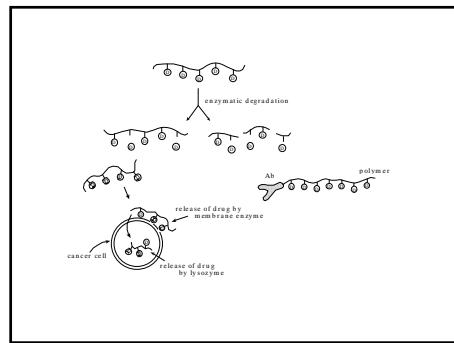
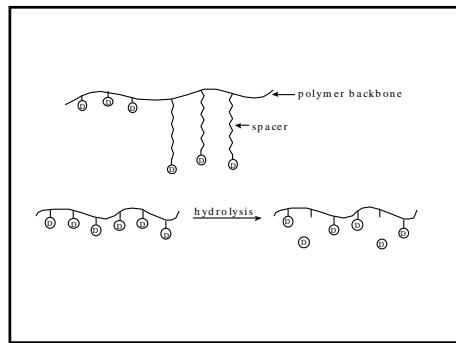
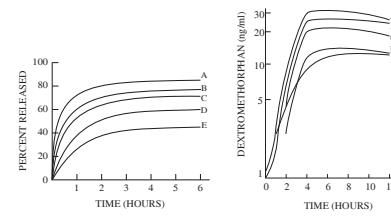
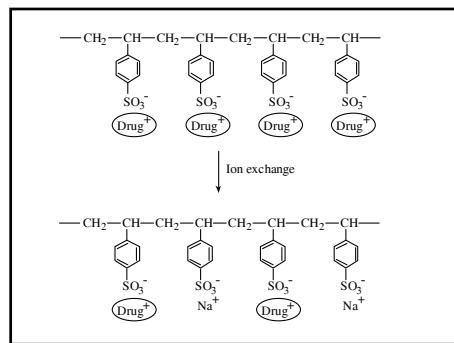
Polymer membrane






COMPLEX MONOLITHIC DEVICES MULTIPLE LAYER MONOLITHIC DEVICES DEPOSIT SYSTEM

COMBINATION OF MICRORESERVOIR-MATRIX SYSTEM P.177. TROPOL-XL TABLET





CHAPTER 9. III. OSMOSIS-CONTROLLED DRUG RELEASE

CHAPTER 9.

IV. ION EXCHANGE-CONTROLLED DRUG RELEASE

