1 Introduction

Animals such as geckos, flies, spiders, and beetles possess the ability to rapidly attach and detach from varied surfaces under highly diverse conditions [1–4]. This unique ability has garnered the attention of scientists and through modern imaging techniques, detailed examination of their attachment pads was carried out and revealed a complex hierarchical structure consisting of fibers, that span the millimeter to nanometer range. These hairs have characteristic geometries, sizes, and mechanical properties depending on the animal. In the example of the gecko, keratinous hairs (setae) are 30–130 mm in length and split up into smaller nanometer-sized spatula-shaped structures (Fig. 1) [5]. Inspired by the complex yet rational organization of nature’s adhesive structures, a wide array of fabrication techniques has been applied to recreate their hierarchical adhesive structures [6].

Besides innovations in fabrication methods, huge strides have also been made theoretically. Van der Waals interactions generated by contacting fibers (spatulae) have been discovered to be the key to their adhesive ability [7,8] and contact mechanics theory by Johnson–Kendal–Robert (JKR) [9] applied to further explain the adhesion properties of fibrillar structures and the parameters that influence them [10–12]. With scientific advances made in both experimental and theoretical research for bioinspired adhesives, a range of applications has been proposed. These include wall-climbing robots [13,14], synthetic dry adhesives for space applications [15], reusable adhesive tapes [16], transfer printing [17], locomotion [18], and medical skin patches [19].

This review paper discusses design parameters that were found to be instrumental to the adhesive properties of synthetically fabricated adhesive structures, currently available fabrication methods for producing these adhesive structures, as well as the various testing methods that have been used experimentally to characterize adhesion performance. A table summarizing the types of material used, young’s modulus, fabrication methods, structure, dimensions, adhesion testing methods, adhesion strength of published literature from 2008 to 2019 is provided in the review. In the final section, current trends, challenges and future outlook of the field of bioinspired adhesives are discussed. This review aims to summarize and organize the vast scientific knowledge accumulated and will serve to be an interesting read for material scientists, theoretical physicists, chemists and all other researchers interested in the field of bioinspired adhesives.

2 Design Parameters

The design of bioinspired dry adhesives is geometry dominated [20,21] and is highly dependent on the material properties, contact radius and shape, aspect ratio, and orientation of individual fibers as well as the geometry and hierarchical arrangement of the fiber array.
2.1 Material Properties

The mechanical stability and surface energy of fibers are key to successful design of synthetic adhesives. Van der Waals forces are the main adhesion component in gecko’s dry adhesion (∼10 N/cm²) [8,22–24]. However, recent studies have pointed out that besides van der Waals interactions, capillary forces also play a major role in the dry adhesion ability of geckos[25,26]. Long fibers are mechanically unstable as they collapse under their own weight and clump together if adhesive forces between fibers are greater than bending forces, this in turn reduces the contact area and decreases overall adhesion of the fiber array. For this reason, fibers should be made of materials of high Young’s modulus such as β-keratin (2–4 GPa) which is the material that gecko hair fibers (‘setae’) are made from. The mechanical behavior of gecko setae was thoroughly studied by Autumn et al. [27] and Peattie et al. [28] Furthermore, stiff microfibrillar structures are less prone to wear and should preserve their adhesive properties for longer durations. However, fibers that are too stiff will lose their ability to deform elastically, leading to a decrease in adhesive contact area.

The optimal adhesive design in terms of fiber height, thickness, elasticity, and spacing are represented visually on an adhesion map (Fig. 2(A)) [11]. Fibers should be stiff enough to not fracture before detachment (fiber fracture limit). At the point of tensile instability, the ideal contact strength transmitted through the contact area should be more than the contact strength (ideal contact strength limit). Fibers should not clump and form bundles during bending (condensation limit). For proper adhesion to rough surfaces, fibers should have a minimum elastic adaptability (adaptability limit).

2.2 Contact Radius and Shape

Another important design parameter is the fiber’s contact radius and shape. The various contact shapes found in animals includes spherical, conical, flat, or toroidal, just to name a few (Fig. 2(B)) [29]. Amongst them, flat contact fibers demonstrate the highest adhesion to smooth surfaces, however its adhesive capability declines rapidly with the presence of roughness or dirt and hence it not suitable for real life applications. Interestingly, animals with highly elastic fibers tend to have flat contact fiber tips, whereas animals with stiffer fibers adopt torus or band-like contact shapes to accommodate for their lack of elasticity.

In their study, Arzt et al. compared pillars with different contact shapes, and discovered that reducing contact radius and/or increasing fiber length has a profound influence on adhesion behavior [30]. Based on JKR contact mechanics theory, the division of a contact area into a number of smaller elements, n, amplifies adhesion by a factor of n². The exponent r is referred to as ‘splitting efficiency’ and varies according to contact geometry [29]. This principle has been named ‘contact splitting’ and provides a quantitative explanation for why lighter animals such as flies have a lower density of hairs on their attachment pads than heavier animals such as geckos [7]. Arzt et al. further discovered that tip geometry has a strong impact on adhesion strength [31,32]. For example, fibers with mushroom-shaped contacts were found to improve stress distribution within the area of contact, leading to an increase in adhesion [33,34].

2.3 Fiber Aspect Ratio and Orientation

Fiber aspect ratio has a strong influence on the effective material property of individual fibers. Fiber microarrays of high aspect ratios (long and thin) have a significantly lower effective modulus as compared to fibers of lower aspect ratios [35]. Fiber aspect ratios are highly dependent on fabrication methods [11].
Fibers' orientation with respect to the surface (tilt angle) is an important albeit less studied design parameter in fabrication of dry adhesives. Studies involving tilted fibers of high aspect ratio demonstrated anisotropic shear adhesion, an interesting feature for synthetic adhesives to avoid peeling off when subjected to shear stress [36,37].

2.4 Geometry of Fiber Array

Fiber packing symmetry is another important design consideration. Most geckos have a setae arrangement of square arrays to avoid clumping of fibers [38]. A hexagonal fiber arrangement would provide maximum adhesion performance due to the high number of fibers that are in contact but could lead to severe clumping of fibers when inter-fiber distance decreases. Besides isotropic array designs, complex anisotropic material designs are frequently found in natural attachment systems [39,40] and could open the path for more sophisticated adhesion geometries [41].

2.5 Hierarchy

The best example of structural hierarchy is demonstrated by the Tokay gecko's foot, starting from lamellae in the millimeter scale, which are divided into arrays of millions of fine microscopic setae, 110 µm in height and 5 µm in diameter, and further splitting into hundreds of nanometer-sized spatulae, 2 µm in height and 200 nm in diameter [6].

3 Fabrication Methods

Different methods of fabrication adhesive structures have been organized and categorized into five main approaches: (1) Microfabrication techniques such as photolithography, electron beam lithography, or dry etching, (2) soft molding of elastomeric polymers, (3) capillary force lithography, (4) filling of porous membranes, (5) chemical vapor deposition, and (6) large-scale manufacturing technologies. A non-exhaustive list of dry adhesive structures fabricated from different methods is given in Table 1. The table summarizes key publications from 2008 to 2019 pertaining to the field of bioinspired dry adhesives.

3.1 Microfabrication

The fabrication of high quality molds or templates is the most important prerequisite for lithography-based techniques. These are typically made of silicon via dry etching or by deposition of metals on patterned substrates.

Fiber microarrays can also be produced directly via microfabrication techniques such as photolithography and dry etching. With this approach, hierarchical structures are produced with fibers that were 250 nm in diameter and 4 mm in height, mimicking the structure of the gecko setae [42,43]. In another study, fiber microarrays made from poly(amide) (PI) were fabricated using e-beam lithography and pattern transfer by dry etching in oxygen plasma [43]. This microfabrication method produced fibers that
Table 1 A non-exhaustive list of synthetic dry adhesives produced from different materials and fabrication methods. PP – poly(propylene), PE – poly(ethylene), PUA – poly(urethane acrylate), PDMS – Poly(dimethylsiloxane), CNT – carbon nanotube, Pth – poly(thiophene), PVS – poly(vinylsiloxane), PMMA - poly(methyl methacrylate), PC – poly(carbonate), PS – poly(styrene), AA – anodic aluminum, AFM – atomic force microscope, d – diameter, s – spacing, h – height

<table>
<thead>
<tr>
<th>Material</th>
<th>Young’s modulus</th>
<th>Fabrication method</th>
<th>Structure and shape</th>
<th>Dimensions @ highest level (μm)</th>
<th>Adhesion test</th>
<th>Adhesion strength</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDMS</td>
<td>1.75 MPa</td>
<td>Soft molding of PDMS on SU-8 templates fabricated from photolithography</td>
<td>Wedge shaped fibers</td>
<td>d = 20 or 50, h = 80 or 200</td>
<td>Flat contact (glass surface)</td>
<td>5.1 kPa (normal) 17 kPa</td>
<td>[67]</td>
</tr>
<tr>
<td>PDMS</td>
<td>2.4–3.0 MPa</td>
<td>Soft molding of PDMS on aluminum alloy templates</td>
<td>Three-tier cylindrical pillar structure</td>
<td>d = 300, s = 600, h = 1200</td>
<td>Flat contact (glass substrate)</td>
<td>/w mushroom tip: ∼43.6 kPa (normal) w/o mushroom tip: ∼18.0 (normal)</td>
<td>[75]</td>
</tr>
<tr>
<td>PDMS</td>
<td></td>
<td>Soft molding of PDMS on Si templates followed by bonding of fiber array via dip-transfer</td>
<td>PDMS nanofibers on top of tilted micropillars</td>
<td>d = 10, s = 20, h = 5</td>
<td>Flat contact (Si surface)</td>
<td>2.35 N/cm² (normal) 5.96 N/cm² (shear)</td>
<td>[76]</td>
</tr>
<tr>
<td>PDMS</td>
<td></td>
<td>Soft molding of PDMS on Si templates fabricated from photolithography and dry etching</td>
<td>Wide-tip micropillars</td>
<td>d = 5, s = 20, h = 10</td>
<td>Flat contact (silicone surface)</td>
<td>10.3 N/cm² (normal)</td>
<td>[77]</td>
</tr>
<tr>
<td>PDMS</td>
<td>1.5 MPa</td>
<td>Soft molding of PDMS on templates fabricated from photolithography followed by thermal treatment</td>
<td>Micropillar arrays</td>
<td>d = 19, s = 40, h = 13</td>
<td>Flat contact (Si surface)</td>
<td>7.09 mN (normal)</td>
<td>[78]</td>
</tr>
<tr>
<td>PDMS-g-poly(n-butyl acrylate) (PDMS-g-PBA)</td>
<td>1.51 MPa</td>
<td>Soft molding of PDMS on PU templates to form pillars, dip transfer to form mushroom tips then grafting of PBA chains</td>
<td>Mushroom-shaped pillars grafted /w PBA chains</td>
<td>d = 52, s = 125, h = 106</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 6 mm)</td>
<td>∼14 mN (normal)</td>
<td>[65]</td>
</tr>
<tr>
<td>poly(glycerol-co-sebacate acrylate) (PGSA)</td>
<td>0.38 MPa</td>
<td>Soft molding of PGSA on Si template fabricated from photolithography and dry etching</td>
<td>Conical microfibers</td>
<td>d = 0.18, s = 2.7, h = 2.4</td>
<td>Macroscale shear test</td>
<td>4.8 N/cm² (shear)</td>
<td>[16]</td>
</tr>
<tr>
<td>PU</td>
<td>3 MPa</td>
<td>Soft molding of PU from silicone templates fabricated by lithography followed by dip transfer</td>
<td>Tilted microfibers with angled mushroom tips</td>
<td>d = 35, s = 120, h = 100</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 6 mm)</td>
<td>∼5 mN (normal) 32 mN (shear) 100 kPa (shear)</td>
<td>[71]</td>
</tr>
<tr>
<td>PU</td>
<td></td>
<td>Soft molding of PU on Si templates fabricated from photolithography and dry etching.</td>
<td>Nanofibers with spatula tips</td>
<td>d = 0.41, h = 2</td>
<td>Flat contact (Si disk)</td>
<td>14.1 N/cm² (normal)</td>
<td>[79]</td>
</tr>
<tr>
<td>PU</td>
<td>25 MPa</td>
<td>Soft molding of PU on PDMS templates fabricated from photolithography.</td>
<td>Rectangular tips on top of tilted prismatic pillars</td>
<td>d = 20 × 7 (rectangular face), s = 37, h = 20</td>
<td>Macroscale shear test</td>
<td>1.25 N/cm² (normal) 2.8 N/cm² (shear)</td>
<td>[80]</td>
</tr>
<tr>
<td>PUA nanocomposites (15%Fe3O4 NPs /w SiO2 shells)</td>
<td>20–110 MPa</td>
<td>Soft molding of PUA nanocomposites on Si templates.</td>
<td>Tilted gradient pillars</td>
<td>d = 2.5, s = 6, h = 20</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 4 mm)</td>
<td>25.1 mN (shear) 8 mN (normal) 8.8 N/cm² (shear)</td>
<td>[81]</td>
</tr>
<tr>
<td>PVS</td>
<td></td>
<td>Soft molding of PVS on templates followed by plasma treatment</td>
<td>Mushroom-shaped micropillars</td>
<td>d = 40, h = 70</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 3 mm)</td>
<td>28.9 mN (normal)</td>
<td>[82]</td>
</tr>
<tr>
<td>NOA81</td>
<td>1.36 GPa</td>
<td>Soft molding of NOA81 on AZ P4620 templates fabricated from photolithography.</td>
<td>Mushroom-shaped tips on top of vertical or tilted pillars</td>
<td>d = 0.5, h = 1.0</td>
<td>Macroscale shear test</td>
<td>7 or 8.5 N/cm² (shear)</td>
<td>[83]</td>
</tr>
<tr>
<td>PC</td>
<td>2 GPa</td>
<td>Capillary force assisted nanoimprinting using a porous AA template</td>
<td>Pillars splitting into multiple fibers</td>
<td>d = 0.09, h = 0.85</td>
<td>Macroscale shear test</td>
<td>6.5 N/cm² (shear)</td>
<td>[84]</td>
</tr>
<tr>
<td>Material</td>
<td>Pressure (GPa)</td>
<td>Description</td>
<td>Fiber Type</td>
<td>Fiber Dimensions</td>
<td>Contact Force</td>
<td>Friction Coefficient</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>3.2</td>
<td>Filling of porous AA membrane with melted PS</td>
<td>Pillars</td>
<td>d = 70, h = 200–700</td>
<td>~1.1 μN (normal)</td>
<td>~8 μN (shear)</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>1</td>
<td>Filling of porous PC membrane with melted PP</td>
<td>Microfiber</td>
<td>d = 0.6, h = 20</td>
<td>2 N/cm² (shear)</td>
<td>326 nN (normal)</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>1.5–2</td>
<td>Filling of porous PC membrane with melted PP</td>
<td>Tilted</td>
<td>d = 0.6, s = 2.77</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 30 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High density PE (HDPE)</td>
<td>0.9</td>
<td>HDPE patterned by laser ablation and melted into porous PC membrane.</td>
<td>Nanofiber array on top of lamellar flaps</td>
<td>d = 0.6, h = 18</td>
<td>Macroscale shear test</td>
<td>2.5 N/cm² (shear)</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>0.4–1</td>
<td>Filling of porous PC membrane with melted PE</td>
<td>Tilted</td>
<td>d = 0.6</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 30 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pth</td>
<td>1.5</td>
<td>Electrochemical deposition of Pth on porous AA membrane</td>
<td>Nanotubule arrays</td>
<td>d = 0.2, h = 8–20</td>
<td>Flat contact (glass surface) Macroscale shear test</td>
<td>80 N/cm² (normal)</td>
<td></td>
</tr>
<tr>
<td>Teflon</td>
<td>1.5</td>
<td>Filling of porous AA membrane with melted Teflon</td>
<td>Double-level Teflon nanofibers</td>
<td>d = 0.2, h = 37</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 8 mm)</td>
<td>12 N/cm² (shear)</td>
<td></td>
</tr>
<tr>
<td>Teflon</td>
<td>1.5</td>
<td>Filling of porous AA membrane with melted Teflon</td>
<td>Fluffy nanostructure on top of each nanopillar</td>
<td>d = 0.2, h = 16</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 6 mm)</td>
<td>7 mN (normal)</td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td>–</td>
<td>Capillary force lithography using PUA mold</td>
<td>Lotus leaf-like surfaces</td>
<td>d = 0.15, s = 0.2, h = 0.5</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 500 μm)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>PDMS</td>
<td>4–5</td>
<td>Capillary force lithography</td>
<td>Micropillars on top of large pillars</td>
<td>d = 1, s = 2, h = 1</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>CNTs</td>
<td>–</td>
<td>CVD</td>
<td>Vertically aligned nanofibers</td>
<td>d = 150, h = 0.01–0.015</td>
<td>Macroscale shear test</td>
<td>100 N/cm² (shear) 20 N/cm² (normal)</td>
<td></td>
</tr>
<tr>
<td>CNTs</td>
<td>1 TPa</td>
<td>CVD</td>
<td>Brush-like CNTs Supporting VA-CNTs</td>
<td>d = ~0.008, h = 700–1000</td>
<td>Macroscale shear test</td>
<td>44.5 N/cm² (shear) 0.88 mN (shear)</td>
<td></td>
</tr>
<tr>
<td>CNTs</td>
<td>4 GPa (SU-8)</td>
<td>VA-CNTs grown by CVD and imprinted on top of SU-8 micropillars</td>
<td>Non-aligned nanowires</td>
<td>d = 0.02–0.03, h = 30</td>
<td>Macroscale shear test</td>
<td>163 N/cm² (shear)</td>
<td></td>
</tr>
<tr>
<td>Ge nanowires /parylene shell</td>
<td>100–150 GPa</td>
<td>Ge nanowires grown by CVD followed by parylene coating</td>
<td>Nickel paddles supporting vertically aligned polymer nanorods</td>
<td>d = 0.2, h = 3</td>
<td>Flat contact (glass punch)</td>
<td>14 Pa (normal)</td>
<td></td>
</tr>
<tr>
<td>Nickel and photoresist</td>
<td>6.2</td>
<td>Nano/microstructures created from photolithography & dry etching, followed by plasma treatment</td>
<td>Mushroom-shaped fibers on micropillars</td>
<td>d = 0.6, s = 1.1 or 1.4, h = 1.0 or 2.7</td>
<td>Hemispherical contact (colloidal probe-AFM, d = 20 μm)</td>
<td>~0.12 μN (normal)</td>
<td></td>
</tr>
<tr>
<td>Acrylic based negative tone resist (IPG780)</td>
<td>4 GPa</td>
<td>3D direct laser writing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
were 0.2–4 mm in diameter and 0.15–2 mm in height with adhesion performance similar to that of the gecko’s dry adhesion ability.

3.2 Soft Molding

Soft molding of UV curable elastomeric precursors such as poly(dimethylsiloxane) (PDMS) on microfabricated molds is a popular technique for producing regular arrays of micropillars (Fig. 3(A) and (B)) [44–47]. After photocuring, the elastomeric replica can be easily separated from the mold due to the chemical inertness of PDMS. This approach has been used to produce regular patterns at high fidelity to study the influence of design parameters such as pillar aspect ratios [44] and contact radius [30] on final adhesion strength. Microarrays of pillars with spatula, spherical, and suction cup tips were fabricated using a modified soft molding approach [32].

3.3 Capillary Force Lithography

Soft molding of fiber arrays is performed with soft polymeric materials with limited mechanical strength. This leads to low aspect ratios of fabricated pillars as collapse occurs for higher aspect ratios due to the material’s low mechanical stability. In order to use rigid polymeric materials of higher mechanical strength, a different fabrication method is required. In capillary force lithography, thermoplastic materials are typically patterned by hot-embossing which involves flowing a polymer melt through micro or

Fig. 3 (A) (1) A silicon wafer is coated with Cr/Au followed by spin-coating and baking PMGI and AZ 9260 photoresists. (2) The AZ 9260 is UV-exposed under the post array mask. (3) Following exposure, the photoresist is developed and dried, leaving undercut areas. (4) Sylgard® 184 is poured onto the mold and cured. (5) The cured silicone is removed by hand, producing the final dry adhesive. (B) SEM images of 10 μm diameter posts with a cap thickness of 1.5 μm and post height of ~20 μm. (C) Schematic of the two-step capillary force lithography process. Polymer microstructures were fabricated using a micropatterned PDMS mold followed by nanofabrication on top of the preformed microstructure using a nanopatterned PUA mold. (D) SEM images of PS microstructures and micro/nanoscale hierarchical structures. A microstructure with 120 μm posts and 25 μm spacing was used. The nanostructure is 100 nm in diameter and 400 nm in spacing with a height of 450 nm. (E) Synthetic fiber fabrication by nanocasting. (F) Clumping in an array of 0.6 μm diameter polyimide fibers. (G) Schematic diagram of chemical vapor deposition (CVD) setup. (H) SEM images of MWCNTs deposited on a masked pattern after 10 min of CVD. Reproduced with permission from (A, B) Sameoto, D., Menon, C., 2009. Journal of Micromechanics and Microengineering 19 (11), 115002. (D) Jeong, H.E., Lee, S.H., Kim, J.K., Suh, K.Y., 2006. Langmuir 22 (4), 1640–1645. Copyright 2006 American Chemical Society. (F) Majidi, C., Groff, R., Fearing, R., 2004. Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE), pp. 579–584. California. (G) Khan, W., Sharma, R., Saini, P., 2016. Carbon Nanotubes – Current Progress of Their Polymer Composites. InTech. (H) Delzeit, L., Nguyen, C.V., Chen, B., et al., 2002. The Journal of Physical Chemistry B 106 (22), 5629–5635. Copyright 2002 American Chemical Society.
nanostructured molds under specific heat and pressure processing conditions. Besides pressure and temperature, the filling also depends on viscosity of polymer melt, hydrophobicity of mold, and pattern geometry. Solidification of polymer melt is achieved by cooling below the crystallization or glass transition temperature of semicrystalline or amorphous polymers, respectively. The final step involves either peeling off or selective dissolution of the template to release the polymer that has solidified in the geometry of the template. This fabrication method has been used to produce arrays of poly(methyl methacrylate) (PMMA) pillars that are 150 nm in diameter and up to 500 nm in height, using a polyurethane acrylate mold [48]. Through a two-step temperature-directed capillary molding process, hierarchical structures of micro- and nanometer-sized pillars of various sizes and spacings were obtained (Fig. 3(C) and (D)) [49]. For this approach, only superhydrophobicity was demonstrated, surface adhesion is yet to be tested.

3.4 Filling Porous Membranes

Due to the time-consuming and costly microfabrication process required to produce high quality molds, cheaper alternatives such as porous polycarbonate (PC) and anodic alumina (AA) membranes have been utilized in the production of arrays of long, nanometer-sized fibers [50,51]. These membranes are commercially available with micrometre- or nanometer-sized pores with different inter-pore spacings and membrane thicknesses. Porous PC membranes containing 0.6 µm cylindrical pores with spacings of less than 5 mm were filled with PI solutions to produce dense arrays of high aspect ratio nanofibers (Fig. 3(E) and (F)) [38].

3.5 Chemical Vapor Deposition (CVD)

Chemical vapor deposition (CVD) is an alternative fabrication technique that does not require a template. Arrays of vertically aligned carbon nanotubes (CNTs) is one of the most popular form of dry adhesive fabricated via CVD (Fig. 3(G) and (H)) [52,53]. CNTs produced from this method possess superior mechanical strength and is able to achieve ultra high aspect ratios [54]. Although adhesion strengths were reported to be 200 times greater than that of geckos, the values correspond to a single bundle of CNTs and not representative of the entire array [55]. The high temperature requirement for CVD fabrication of CNTs makes it impossible for direct fabrication on polymers, severely limiting their sample size (< 1 cm²) [56]. For most applications, rigid surfaces have been used. Other studies on CNT-adhesives examined the effect of water on the adhesive surface and demonstrated that they collapse complete when exposed to water. Other gas phase growth methods include the use of parylene, a gas-deposited polymer, grown on nanofibers containing either a carbon [57] or germanium [58] core.

3.6 Large-Scale Manufacturing Technologies

Most fabrication techniques available for creating synthetic dry adhesives are limited only to the laboratory and is severely lacking in terms of scalability and productivity. As such, efforts in the past 5 years have been focused on establishing continuous and scalable production processes. Arzt et al. developed a roll-to-roll process for fabrication of high-performance, mushroom-shaped dry adhesives out of micropatterns made from UV-curable PU acrylates [59]. A thermal roll-imprinting lithography (TRL) system was designed by Kwak et al. for the continuous production of PDMS microstructures [60]. Jeong et al. introduced a manufacturing technique based on automated CNC machining and replica molding that enables simple and scalable fabrication of bioinspired dry adhesives [61].

4 Adhesion Tests

Due to the lack of standardized adhesion testing methods in the field, there has been a huge range of adhesion properties reported in recent years. Three main types of adhesion tests are shown in Fig. 4. Flat contact tests, hemispherical contact tests and shear measurements or peel tests. Flat and hemispherical contact tests are typically designed to quantify normal adhesion strength of isotropic dry adhesives. Shear measurements of peel tests can be used to characterize anisotropic dry adhesives.

4.1 Flat Contact

Flat–flat contact adhesion tests are able to provide a well-defined contact area and give accurate results for measurements involving normal adhesion pressure. However, precise alignment of contact devices is crucial to produce accurate results and a self-aligning mechanism may be employed. Typically, there are two variations of this testing method: the rigid adhesive sample is pulled off a flat contact surface (Fig. 4(A)) [62,63] or a flat contact surface is pulled off the adhesive sample (Fig. 4(B)) [64].

4.2 Hemispherical Contact

In contrast to the flat contact approach, the hemispherical contact adhesion test does not require precise alignment during adhesion testing and does not have a fixed contact area – contact area is dependent on the preload. The hemispherical contact is
widely used in adhesion testing due to its immense versatility to different applications [65,66]. Higher adhesive forces are measured with lightly preloaded hemispherical tips as the contact area closely resembles that of a flat surface in this region. Peel force measurements can also be made by attaching fibers to areas of hemispheric contact that are curved away from the adhesive surface. For testing anisotropic adhesive samples, both the flat–flat [36,67] and hemispherical tip contacts [68] have been used in a test method known as load–drag–pull (LDP) (Fig. 4(C)) where a normal load is applied, followed by tangential displacement, then measurement of pull-off force.

4.3 Shear Measurements or Peel Tests

Shear and peel strength measurements are typically macroscale measurements and require larger adhesive samples. Shear strength measurements are frequently used to characterize CNT-based adhesives, which have small normal adhesion strengths, and also in testing anisotropic adhesives (Fig. 4(D)) [69–71]. For shear adhesion tests, no normal load is applied to the material.

The peel test is frequently applied to test the peel strength of elastomers [72], and to test both isotropic [73], and anisotropic dry adhesives [74]. The theoretical model for thin film peeling can be applied to derive adhesion energy and compared with those of unstructured polymers. In this model, factors such as young’s modulus, sample thickness and width are all taken into account.

5 Conclusion and Outlook

With advances made in fabrication techniques, the reproducible production of complex hierarchical structures is now possible. Especially promising are soft elastomeric polymers as materials for synthesis of dry adhesives and have been demonstrated to be compatible with large-scale manufacturing techniques such as roll-to-roll UV lithography, thermal roll-imprinting lithography, and CNC machining and replica molding. Another exciting approach for synthetic adhesives is the fabrication of high density arrays of vertically aligned CNTs (VA-CNTs). CNTs are superior mechanically and can be produced at exceptionally high aspect ratios (>1000:1) without buckling due to their superior mechanical properties and have been demonstrated to have excellent adhesive properties, perhaps even greater than that of the gecko’s. Recent efforts have also seen the incorporation of advanced features such as mushroom-shaped structures to improve contact stress distribution and adhesion directionality to facilitate detachment.
However, with current bioinspired dry adhesives, the long-term sustainability of adhesive properties and adaptability to different surface conditions and unpredictable environmental factors remain as questions to be answered. A smaller concern for the field of synthetic dry adhesives is the development of standardized testing methods to facilitate direct comparison of published results. Also, results from nano- and microscale adhesion tests are largely inadequate for the characterization of macroscale performance and macroscale testing methods should play a bigger role in quantifying performance of synthetic adhesives.

In conclusion, scientists in the field of bioinspired adhesives have a challenging task ahead but once these problems are solved, synthetic adhesives are expected to play an enabling role for a wide range of adhesive products from household devices such as reusable adhesive tapes to high-end applications such as wall-climbing robots in outer space.

References

