PRESENCE OF PLASMIDS in bacteria and their autonomous behavior are revealed in a photograph, made by the author, of colonies of *Staphylococcus aureus* growing on a temperature gradient: from 30 degrees Celsius at the bottom to 40 degrees at the top. Most of the cells originally plated on the agar contain a plasmid with a gene coding for penicillinase. Cells that have the plasmid and produce penicillinase stain purple; those without the plasmid, lacking penicillinase, stain orange. The plasmid's replication (but not the host cell's) is temperature-sensitive, so that the higher the temperature is, the more often cells lacking the plasmid and penicillinase are generated. When a plasmid is lost from a cell, the cell's progeny stain orange rather than purple, giving rise to colonies with radial purple and orange sectors.
Plasmids

These accessory genetic elements in bacteria, best known as carriers of resistance to antibiotics and as vehicles for genetic engineering, are actually subcellular organisms poised on the threshold of life

by Richard P. Novick

The living cell is the only natural environment within which the intricate chemistry of life can proceed. As such it is the fundamental unit of biological organization for multicellular organisms as well as for unicellular ones. It is also an ecological niche occupied by a variety of subcellular, microscopic organisms—organisms whose structures and reproductive dynamics are so profoundly different from those of cellular forms that they should probably be assigned to a new taxonomic kingdom.

The best-known of these curious life forms are the viruses: elegantly symmetrical particulate structures composed essentially of a molecule of nucleic acid encapsulated in a protein coat. They can exist outside the cell, but there they are inert. Once inserted into a cell, however, their nucleic acid (RNA or DNA) programs the cell’s metabolic apparatus to the service of the virus; the nucleic acid replicates and is encapsulated, in the process destroying the cell and releasing a new crop of virus particles.

There is a less familiar class of subcellular organisms: the plasmids, found for the most part in bacteria. Plasmids are simpler in organization than viruses. They have no protein coat and no extracellular phase; they are no more than circular molecules of double-strand DNA that multiply independently within host cells and are inherited in a regular manner as those cells proliferate. For a time after their discovery about 30 years ago plasmids were thought to be something of an oddity. Now they are known to be extremely common. Plasmids are found in virtually all bacterial species; they are probably present in most individual bacterial cells. They are not essential to the everyday metabolism of the host cell, and so it is almost always possible to isolate a variant of any plasmid-carrying strain that no longer has any plasmids. The loss is permanent: the cell cannot regenerate a new plasmid but can only acquire it from another bacterium. The information encoded in a plasmid (or in any other DNA molecule) can be developed only through the prolonged and tortuous process of organic evolution.

Plasmids account for only a small part of a cell’s genome: typically between a fraction of 1 percent and 2 or 3 percent. That small fraction of the cell’s hereditary information, however, codes for important accessory genetic traits that are not ordinarily encoded by the bacterial chromosome. Plasmids alone carry the information for conjugation, or “mating,” between bacteria. They are uniquely responsible for several diseases of plants and animals. They enable their bacterial hosts to utilize many complex substances as nutrients. And they confer on their host cells the ability to resist a wide variety of toxic agents, including antibiotics.

It was the importance of these genetic traits, and in particular the clinical importance of antibiotic resistance, that first drew the close attention of biologists to plasmids and led to some understanding of their role in bacterial genetics. In the past five years plasmids have been intensively investigated, dissected and manipulated for another reason: they were found to be ideal vehicles for introducing nonbacterial genes into bacterial cells by the techniques of molecular cloning and thereby purifying and greatly amplifying the foreign genes. The molecular cloning of DNA has already revolutionized genetic analysis and, because the bacteria can sometimes be induced to manufacture nonbacterial proteins, is the basis of a new “applied genetics” with great promise for medicine and industry.

Plasmids as Organisms

In a broader perspective plasmids are significant because they force biologists to reevaluate the essential nature of living things. Plasmids are poised at the very threshold of life, between the inanimate and the animate. Are they merely bits of DNA that are integral parts of the cell’s genome, contributing a little extra genetic information? Or are they independently evolving subcellular organisms more or less on a par with the viruses? The second view is strongly supported by a number of significant observations.

In the first place, each plasmid autonomously controls its own “copy number”: the number of replicas of the plasmid present in a host cell. Moreover, conjugation between bacterial cells can lead to the exchange of plasmids between different species, and even genera, that are quite unable to exchange chromosomal genes. Finally and most significant, this exchange can result in the transfer from one species to a competing species of a plasmid carrying genes that enable the recipient to survive at the expense of the donor. In other words, the plasmids have evolved the ability to survive regardless of the fate of their host species—something that would be inconceivable, within the framework of evolution through natural selection, for an element that was merely a component of a particular organism’s genome.

These observations imply that plasmids are indeed independent organisms, members of a hierarchy of subcellular life. Within that hierarchy animal viruses such as those that cause poliomyelitis or yellow fever and bacteriophages, or bacterial viruses, such as T4 can be regarded as predators because they always kill the cells they infect. “Temperate” phages and certain animal viruses, which sometimes kill the host cell but also sometimes coexist stably within the cell without apparently harming or benefiting it, can be considered subcellular parasites. Plasmids, then, can be regarded as endosymbionts: they exist stably within the host cell and often perform a service by supplying the host with adaptive genetic functions, the quid pro quo of the symbiotic state.

The notion that naked molecules of DNA are organisms cannot be squared with the conventional cell-based concept of life. What is common to all living things is that they respond independently to evolutionary forces and duplicate their genetic material autonomously. Any nucleic acid system that controls its own replication should therefore be regarded as an organism. An examination
of the details of the molecular processes that determine the life cycle of plasmids should advance understanding of the very essence of the living state and hence illuminate the borderline between the animate and the inanimate.

The Discovery of Plasmids

In the early 1950's, soon after the discovery of conjugation in the bacterium *Escherichia coli* by Joshua Lederberg, it became clear that there were two genetically determined "mating" types and that genetic information was physically transferred from a "male," or donor, type to a "female," or recipient. The genetic character of "maleness"—the F (for fertility) factor—was transferred far more often than any other trait. Moreover, the F factor was transferred independently of any other known donor genes; it was not "linked" to any of them. In the case of a eukaryotic cell (a higher cell with a nucleus and with its DNA organized in discrete chromosomes visible under a light microscope) such a finding would have meant that the trait was encoded by an extrachromosomal gene. Lederberg saw that the F factor was somehow similar to extrachromosomal genetic elements in the chromosome, the F factor is genetically very interesting but not necessarily widespread, the discovery of R factors made it suddenly clear that extrachromosomal genetic elements were important components of the bacterial microcosm, with clinical significance as well as scientific.

Soon after the discovery of R factors in the enteric bacteria I found similar factors in staphylococci. They carried a gene for an extremely potent enzyme, penicillin beta-lactamase (penicillinase), that broke down penicillin, and they were responsible for the resistance to penicillin that was compromising treatment of "hospital staph" in many parts of the world in the early 1960's. The staphylococcal R factors are apparent-

PLASMID HETERODUPLEX is seen in an electron micrograph made by Marjorie M. Schwesinger in the author's laboratory. Plasmids pI2S8 and pI6187, identical except that the former carries a transposon specifying resistance to erythromycin, were denatured and the separated strands were allowed to reanneal. The heteroduplex has one strand from each of the plasmids. The two strands match perfectly except for the sequence constituting the transposon. As the drawing indicates, the two strands therefore form a double-strand molecule with a single-strand loop: the transposon, which is attached by a short double-strand stem formed by its "inverted repeat" termini.
ly unable to promote their own transfer by conjugation. They are transferred passively by transduction: a process in which a bit of bacterial DNA is encapsulated in a phage particle (in place of the phage's own DNA) and then introduced into another cell infected by the phage. A substantial proportion of the R factors of enteric bacteria are similarly unable to promote their own conjugative transfer and rely instead on transduction or on mobilization by another, conjugative plasmid that is present in the same cell.

By the mid-1960's it was apparent that most of the R factors in staphylococci and the enteric bacteria (and ColEl too) were different from the F factor and lambda in that they remained extrachromosomal instead of undergoing reversible integration into the chromosome, and so they did not fit the restrictive definition of an episome. It seemed to me the requirement of reversible integration made it impossible to group together a wide range of clearly related extrachromosomal genetic systems, and in 1963 I suggested that Ledergberg's more general term was more appropriate; other workers in the field agreed, and gradually over the next 15 years these mobile extrachromosomal genetic elements in bacteria came to be generally known as plasmids rather than episomes. Gradually too it became evident that plasmids are responsible for a remarkably wide range of biological activities in bacteria. Appreciation of the role of plasmids (and of some other extrachromosomal genetic systems that have come to light even more recently) has produced a rather dramatic shift in biologists' thinking about genetics. The traditional view was that the genetic make-up of a species was about the same from one cell to another and was constant over long periods of time. Now a significant proportion of genetic traits, not only in bacteria but also in higher organisms, are known to be variable (present in some individual cells or strains, absent in others), labile (subject to frequent loss or gain) and mobile (transferable between individual cells or transposable from one site to another in a cell)—all because those traits are associated with plasmids and other atypical genetic systems.

The Variety of Plasmids

In 1964 Mark Richmond and Eric Johnston of the National Institute for Medical Research in England showed that the staphylococci responsible for an outbreak of postsurgical "suture line" infections carried a plasmid enabling them not only to destroy penicillin but also to grow in the mercury-based disinfectant used to sterilize the sutures. In my laboratory at the Public Health Research Institute of the City of New York, Christine Roth and I found that our staph plasmids carried genes for resistance to penicillin and mercury compounds and also to a variety of other heavy-metal compounds lethal to staphylococci: salts of cadmium, bismuth, lead and antimony and the ions arsenate and arsinite. Various heavy-metal resistance genes have since been found on some E.coli R plasmids.

Many other kinds of specialty genes are carried by plasmids rather than by the bacterial chromosome, including the genes for some human diseases such as traveler's diarrhea and staphylococcal impetigo, for the fermentation of milk by lactic acid bacteria to produce cheese and for much of the metabolic versatility of the pseudomonads, soil bacteria that can degrade a variety of complex hydrocarbons (and may have applications such as cleaning up oil spills and converting petroleum into edible proteins). Plasmids give rise to a curious gap vacuole in salt-loving bacteria; they are thought to control the synthesis by Bacillus thuringiensis of an insecticide widely applied to control the gypsy moth and tent worms.

Apart from the rather special nature of many of their functions, plasmid genes are not basically different from other genes. For the most part they encode proteins that are active enzymes, and these proteins are synthesized by the same metabolic machinery—supplied by the cell—as other proteins.

The most intensively studied of the plasmid-derived behaviors has been resistance to antibiotics and other substances toxic to bacteria. It was the first widespread plasmid-carried property to be encountered; it presents a grave medical problem; it is a convenient selective trait for experiments in bacterial genetics and in molecular cloning, and analyzing it sheds light on the origin of plasmids and on how they accumulate a variety of genes.

Resistance to Antibiotics

At least three different strategies have evolved by which plasmid-associated genes resist toxic substances, including those we know as antibiotics. The simplest is outright destruction of the antibiotic. This is the case for resistance to penicillin, chloramphenicol, aminoglycoside antibiotics such as streptomycin, and mercury compounds. Another strategy involves blocking access of the toxic substance to its particular target in the cell. The macrolide antibiotics, such as erythromycin, act by binding to the cellular organelles called ribosomes and thereby blocking the synthesis of proteins; Bernard Weisblum and his colleagues at the University of Wisconsin Medical School have shown that the plasmid-borne resistance genes attach a methyl group to the ribosomal RNA and so prevent the binding of the antibiotic. Tetracycline is apparently kept out

GEL ELECTROPHORESIS reveals the presence of plasmids in bacteria. Daniel A. Portnoy and Stanley Falkow of the University of Washington at Seattle prepared cell-free extracts of seven strains of the bacterium Escherichia coli, eliminated most of the chromosomal DNA and placed samples in slots at one end of an agarose gel slab. Application of an electric current caused the negatively charged DNA molecules to migrate toward the positive electrode at a rate inversely proportional to the logarithm of their size. The DNA, labeled with a fluorescent dye, is visualized as a set of linear bands. The top band represents material still in the origin wells. The next band (top arrow), representing a plasmid responsible for traveler's diarrhea, is common to all samples except No. 5—a strain that does not cause the disease. The other distinct bands correspond to various plasmids, some of which specify antibiotic resistance. The faint, more diffuse bands (bottom arrow) correspond to segments of residual chromosomal DNA.
Our widely accepted UNIX™ operating system is simplifying the use of computers. Designed to handle a variety of applications, it is being used to manage and maintain the telecommunications network, control experiments, develop software, process text, prepare documents, and teach computer science.

The UNIX system allows users to take small programs and assemble them like building blocks to perform complex tasks. In text processing, for example, the command "Spell Bell Labs Ad" tells a computer to proofread this ad against a dictionary filed in its memory. The program that performs the task was created by simply combining several smaller UNIX programs.

Another useful feature of our UNIX operating system is its ease in typesetting mathematical expressions. To typeset an equation like
\[\sum_{i=1}^{\infty} \frac{1}{x_i} = \pi \]
someone need only type: "Sum from i=1 to infinity 1 over x sub i = pi." The computer does everything else.

Since 1969 the Bell System has installed more than 1100 UNIX systems. Along with other Bell Labs innovations in computing technology, these systems are enhancing the way the nation’s telecommunications network is planned, designed, built, and operated. Through licensing agreements with Western Electric, universities have installed over 800 UNIX systems, and government and industrial facilities are using over 400. The UNIX operating system can be used with computers of different manufacturers because it is small, cleanly designed, and written in a general-purpose programming language. Such portability in a computer operating system saves time and money.

Building on the past
The UNIX system is just one of many Bell Labs advances in computing science and technology over the years. Among our innovations:
• Application of telephone switching concepts and technology to early computers
• First demonstration of remote computer terminal and data link
• Conception of electronic analog computer
• First design of AND and OR gates for diode circuitry
• Formulation of Information Theory
• Invention of error-detecting and error-correcting codes
• Demonstration of first general-purpose transistorized digital computer
• Development of computer operating systems
• Design of computer languages, including ALTRAN, SNOBOL, L6, and C
• Creation of computer graphics techniques for storing, manipulating, and presenting information
• Development of Fast Fourier Transform
• Design of central processors for switching systems having virtually no downtime

Looking ahead
Computing technology is having a major impact on the telecommunications business. It's increasing the Bell System's ability to provide new services and handle existing ones more efficiently. Today, for example, the nationwide telecommunications network links thousands of software-controlled electronic systems, making it by far the world's largest distributed processing network. We and our partners—Western Electric and the telephone companies of the Bell System—are putting technology to work so that the network will continue to evolve and expand its information-handling capabilities. The object, of course, is to meet the fast-growing and changing needs of Bell System customers.

For information about employment, write:
Bell Laboratories, Room 3C-303,
600 Mountain Avenue,
Murray Hill, N.J. 07974
Please include a resume.
An equal opportunity employer.

© 1980 SCIENTIFIC AMERICAN, INC
GENES FOR RESISTANCE to antibiotics are collected by plasmids and are transferred from one bacterial cell to another by various mechanisms, sometimes enabling a plasmid to survive the death of its host. Here two bacteria are depicted (top): an Escherichia coli cell containing a plasmid with genes for transmission by conjugation (tra) and for tetracycline resistance (tet) and a Salmonella cell with a plasmid carrying a gene for resistance to chloramphenicol (cat). The two cells conjugate and the tet-carrying plasmid is transferred to the salmonella, rendering it resistant to tetracycline as well as to chloramphenicol. In an environment containing both antibiotics the E. coli die, but their plasmid survives in the successful host. The tet gene is on a transposon that subsequently moves from one plasmid to the other, which then carries genes for resistance to both antibiotics. Finally the double-resistance plasmid may be transferred again, by transduction. A bacterial virus infects the salmonella and proliferates, killing the cell; one phage particle incorporates the plasmid instead of viral DNA and transfers it to new cell.

of the cell by plasmid-encoded proteins that modify some specific transport system in the cell envelope. Simon D. Silver of Washington University has found that staphylococcal resistance to the arsenate ion is the result of an active pumping process somehow mediated by plasmid genes; the ions enter the cell without difficulty but are pumped out again as fast as they get in.

The third strategy, substitution of a bypassing process for a process inhibited by the antibacterial agent, provides resistance to the sulfa drugs and trimethoprim, which act by inhibiting bacterial enzymes required for the synthesis of the essential vitamin folic acid. (Human beings, unlike bacteria, are unable to synthesize the vitamin; they depend on dietary sources, which provide too little folic acid to sustain infecting bacteria.) Plasmid-borne resistance to these drugs involves the substitution for the drug-inhibited enzyme of another enzyme that has the same function but is insensitive to the inhibition.

Clearly such genetic strategies as these could not have developed overnight; they must have arisen in the slow course of organic evolution, and their existence must predate the clinical application of antibiotics by millions of years. As a matter of fact an examination of bacteria isolated and stored long before the antibiotic era, or isolated recently in remote places unlikely to have been exposed to antibiotics, often reveals the presence of fully developed R plasmids.

I should make it clear that plasmids are not the only source of bacterial antibiotic-resistance traits. Mutations in chromosomal genes can also give rise to such traits, and for several years chromosomal mutations were mistakenly assumed to be responsible for clinical antibiotic resistance. The confusion arose from laboratory experiments in which pure strains of bacteria were challenged by an antibiotic. If a spontaneous mutation arose on a bacterial chromosome and fortuitously enabled a cell to resist the drug, that cell proliferated as the other cells died. Such a mechanism could not, however, explain the naturally occurring resistance to several drugs that appeared simultaneously in bacteria infecting a person being treated with a single antibiotic. Moreover, the resistant mutants isolated in laboratory experiments were shown to grow poorly in the absence of the particular antibiotic that had selected for them. Chromosomal resistance mutations modify the antibiotic-sensitive cellular target—say a ribosome or the cell wall—in a way that reduces its general efficiency; the resistant mutants are evolutionary cripples, and under natural conditions they rapidly die out. Plasmid-determined resistance traits, in contrast, have evolved over time to be exquisitely specific: they
RESTRICTION ENDONUCLEASES are enzymes that cleave DNA at sites determined by the sequence of the DNA's component nucleotide bases A, G, T and C. Each enzyme (two of which are illustrated here) recognizes a particular palindromic sequence of base pairs and cuts each DNA strand between specific bases of that sequence. If the sites are offset from each other as in the case of EcoRI (left), the cleavage yields fragments with complementary, overlapping single-strand ends. Such “sticky end” fragments join readily with other fragments generated by same enzyme and are particularly suitable for making new combinations of fragments.

Protect the antibiotic’s target in the cell without significantly reducing the cell’s general adaptivity. That is the key to their success.

Evolution of Plasmids

How and why did the resistance genes of plasmids evolve? Julian E. Davies of the University of Wisconsin, noting that antibiotics are manufactured by bacteria and fungi, has suggested that the same microorganisms evolved resistance genes to protect themselves from their own products. He and his co-workers have shown that Bacillus circulans, which produces the aminoglycoside antibiotic butirosin, synthesizes an enzyme that inactivates butirosin and several other aminoglycosides, including neomycin. The gene specifying the enzyme can be transferred to E. coli by recombinant-DNA techniques, rendering the E. coli resistant to neomycin.

In my own view there is an additional possibility. Antibiotics are manufactured by organisms in the soil, which also contains traces of toxic heavy metals. The presence of these compounds in the soil (even at low concentrations) could have evoked the evolution of resistance genes among sensitive soil bacteria, as primary plasmid genes or as chromosomal genes that were later transferred to plasmids. In either case the genes would have made their way to nonsoil bacteria that cause infections in animals.

This view is supported by the fact that although penicillin is manufactured by fungi (which are eukaryotes, not bacteria), many nonpathogenic soil bacteria synthesize a penicillinase similar to the enzyme responsible for penicillin resistance in pathogenic animal bacteria. Plasmids specifying penicillinase have been found in staphylococcus strains isolated before the discovery of penicillin. And plasmids specifying resistance to tetracycline have been found in several species of soil bacteria. In my laboratory June Polak has shown that one such plasmid can be transferred to Staphylococcus aureus, which thereupon becomes resistant to tetracycline; the plasmid is almost identical with a plasmid that is native to staphylococci and specifies resistance to kanamycin. The implication of this soil-bacteria hypothesis is that the large-scale application of antibiotics in medicine and agriculture has disrupted a very old ecosystem in which a balance had been achieved between producers of antibiotics and target organisms with resistance genes.

When R plasmids were first discovered, they commonly carried one or two resistance traits. Today it is not uncommon to find a plasmid carrying genes for resistance to as many as 10 antibiotics. The rather frightening clinical implication of this accumulation of resistance genes is that treating a patient with a single drug can promote the selection of an organism resistant to everything in sight. Analysis of this phenomenon has revealed another astonishing property of plasmids and related genetic systems: genetic transposition.

At first it was assumed, by analogy with the F factor’s behavior, that chromosomal mutations specifying resistance had been “picked up” by R plasmids temporarily integrated into the chromosome, which later emerged entraining a segment of chromosomal DNA. It was impossible, however, to find DNA sequences on plasmids that matched sequences on their host-cell chromosomes, as would have been expected if the plasmids had picked up significant amounts of the chromosomal DNA. Moreover, if the plasmids could routinely acquire chromosomal resistance genes, how had they apparently been able to choose only resistance genes? Even if some selective force was responsible, surely some sequences on each side of the resistance genes would have been picked up. Actually, as it has turned out, many R plasmids do not insert themselves into the chromosome in the manner of F factors.

The real answer to multiple antibiotic resistance came only in 1974, first from Alan E. Jacob and Robert W. Hedges...
of the University of London Royal Postgraduate Medical School and then quickly from at least five other investigative groups. The resistance genes in question, it developed, were on novel genetic elements that can transfer themselves bodily from one genetic location to another in a cell; they do so without benefit of the enzymes that mediate more typical recombination mechanisms and without any need for the matching DNA base sequences required by those mechanisms. These new genetic elements, known as transposons, are responsible not only for the accumulation by plasmids of multiple resistance genes but also for gross genetic rearrangements in bacteria and apparently in eukaryotes too [see "Transposable Genetic Elements," by Stanley N. Cohen and James A. Shapiro; SCIENTIFIC AMERICAN, February]. Probably the prevalence of resistance genes on the transposons discovered so far will turn out to have the same basis as the prevalence of R plasmids themselves: the radical change in the processes of evolution brought about by the wholesale dissemination of antibiotics.

The Structure of Plasmids

Plasmid genes seem to be arranged so as to ensure hereditary stability and at the same time allow great structural flexibility. Unlike viruses, plasmids can acquire new genes and grossly rearrange old ones to maintain a store of genetic information consistent with the needs of their current host organism—all without compromising their own replicative efficiency. To appreciate the plasmid's genetic strategy one needs to know a little about the experimental analysis that has revealed it.

Plasmids do not readily yield their organizational secrets to the mapping techniques that have revealed the structure and function of genetic systems in animals, plants and even viruses. Those techniques are based on tracking gene mutations in genetic crossing experiments. In plasmids it is hard to isolate mutations affecting replication functions, and the analysis of genetic recombination is discouragingly complex. Plasmids have, however, turned out to be well suited to some recently developed techniques of molecular genetics, in particular the application of gel electrophoresis to the analysis of DNA and the dissection and cloning of DNA sequences with enzymes, known as restriction endonucleases, that are synthesized by bacteria.

A plasmid, like most other DNA molecules, is a double helix each strand of which is a linear array of the four nucleotide bases adenine (A), guanine (G), thymine (T) and cytosine (C). The sequence of bases on one chain is complementary to the sequence on the other chain: A always pairs with T and G pairs with C. Each restriction enzyme recognizes a specific short sequence of bases and cleaves DNA at a particular site within that sequence wherever it may be in any DNA molecule. Given a large

![Diagram of plasmid mapping](image)

DATA FOR MAPPING plasmid p1258 are obtained by cleaving the plasmid and variants of it with restriction enzymes and analyzing the fragments by gel electrophoresis. The plasmids are shown in the top row with cleavage sites indicated; the cleavage products are shown in the next row. Below each set of fragments is a schematic representation of the track on a gel that establishes the size of each fragment. Track No. 1 shows that enzyme EcoRI cuts the plasmid into four fragments, A, B, C and D, that are respectively about 13, seven, six and two kilobases (thousands of base pairs) long. The sequence of the fragments around the loop is determined by "partial digestion," in which not all the plasmid molecules are completely cleaved. The presence in track No. 2 of uncleaved fragments comprising C and D (but not any combining Band D) establishes the sequence: A, B, C, D. To make smaller fragments for detailed mapping the mixture of fragments can be treated with another enzyme. Track No. 3, for example, shows that enzyme BamHI cuts D into two pieces, establishing the location of the single site of BamHI cleavage on this plasmid. Track No. 4 is for a plasmid in which a deletion mutation has disrupted a sequence encoding penicillinase; the penicillinase gene must lie at least partly in B, because the B band is now smaller (it travels farther). In track No. 5 a different deletion (eliminating resistance to arsenate and arsenite) has joined fragments A and B, confirming the adjacency of A
collection of identical DNA molecules, such as a pure sample of plasmid DNA, each molecule will be cut by a particular endonuclease at precisely the same sites, yielding as many subsets of identical molecular fragments as there are cleavage sites on the original molecule. These subsets of fragments can be conveniently separated from one another according to size (or molecular length) by gel electrophoresis. The cleaved DNA is placed in a rectangular slot near one end of a slab of gel; an electric current is applied and the DNA molecules migrate through the gel toward the positive electrode at a rate inversely proportional to the logarithm of their molecular length. Each subset of identical fragments forms a narrow horizontal band whose position can be visualized by soaking the gel in a fluorescent dye such as ethidium bromide (which binds to DNA) and photographing it under ultraviolet radiation.

By dissecting a plasmid with several restriction enzymes, separately and in

and B and locating the resistance genes at or near the A-B junction. A transposon carrying erythromycin resistance has been deleted in the plasmid of track No. 6; it must have been in A because the A band now travels further. Two secondary insertions of the transposon, one in fragment D (track No. 7) and the other in fragment C (track No. 8), both abolish resistance to mercury disinfectants. The gene responsible for that resistance must therefore be partly in fragment D and partly in C.

Merry Christmas
from all of us at Jack Daniel's

Jack Daniel Distillery, Lem Mottow, Prop., Inc., Route 1, Lynchburg (Pop. 361), Tennessee 37352

© 1980 SCIENTIFIC AMERICAN, INC
Unusual instructional games designed by university professors to make learning fun through brain-to-brain action. Beginning games can be mastered by young children—and final games will challenge intelligent adults. These are the famous GAMES FOR THINKERS from WFF 'N PROOF Publishers.

- WFF 'N PROOF (logic) $16.00
- QUERIES 'N THEORIES (sci & lang) $16.00
- EQUATIONS (mathematics) $13.00
- ON-SETS (set theory) $13.00
- PROPAGANDA (social studies) $13.00
- ON-WORDS (word structuring) $2.75
- CONFIGURATIONS (geometry) $7.75
- TRI-NIM (problem solving) $6.75
- REAL NUMBERS (arithmetic) $2.75
- WFF (beginner's logic) $2.75
- ON-WORDS (word structuring puzzle) $2.75
- TAC-TICKLE (pure strategy) $2.25
- TEACHERS MANUAL $2.00
- MEDITATION GAME (pure strategy) $2.25
- THINKERS BOOKENDS $19.00

Complete 13 Kit THINK TANK & Teachers Manual with Bookends $119.50
without Bookends $106.50

*includes postage & handling charges
Order from WFF 'N PROOF
1490-ZO South Blvd., Ann Arbor, MI 48104
Fully guaranteed. Dealer inquiries invited.

How to Argue and Win!
Here is a clearly written basic guide to logical thinking, covering how to spot the fallacies, the prejudices and emotionalism, the inappropriate analogies, etc., in the other fellow's argument and how to watch for disingenuousness, the irrational in your own judgments. The author makes plain not only why people resist facing the truth, but also why people resist facing the truth.
A tool for clear thinking as well as convincing others.
$7.95 plus 95c handling

The ART OF ARGUMENT by Giles St. Aubyn

GEM TESTING
For Fun and Profit
This exciting pursuit combines the challenge of detective work—the thrill of spotting sensational "buys”... the satisfaction of knowing when someone else's big fiber claim isn't—and the opportunity for high pay, spare-time earning. GEM TESTING SIDE of amateur and professional alike, is a recreationally simple and nicely illustrated book by W. Anderson, director of London's world famous Precious Stone Laboratory. Anderson has examined more gems than any man in history. Now he shows you step-by-step the high speed methods by which he unerringly identifies precious stones. Emphasis throughout the book is on the practical, the examination with the naked eye. The FIRST AMERICAN EDITION of GEM TESTING tells, tells and explains everything you need to know. Captively illustrated, only $11.95 plus $95c handling

Math Without Tears
Using non-technical language and a light touch, this book offers you a basic understanding of many everyday applications of mathematics. He takes the reader from simple counting to trigonometry and calculus. The practical application of math is humorously written.
Now the comfort of your own home at minimum cost.
$9.95 plus $95c handling

No handling charge on 3 books or more
EMERSON BOOKS, INC.
Dept. 336-F, Buchanan, NY 10511
10-Day Money-Back Guarantee

Plant a THINK TANK anywhere and watch the minds grow!

© 1980 SCIENTIFIC AMERICAN, INC

THEORY OF ARGUMENT by Giambattista Vico

R. B. N. M. 1490. 5. 4.

The basic theoretical foundation for considering this question was developed in 1963 by Jacob, Sydney Brenner and François Cuzin. They proposed that for any given "replicon," or replication unit, whether it is a bacterial chromosome, a segment of a eukaryotic chromosome, a virus, a plasmid or some other form, replication begins at a specific point (the origin) and proceeds in a sequential and linear manner to another specific point (the terminus), where it stops; an "initiator" substance, encoded by the replicon itself, acts at the origin to trigger replication. They proposed that in bacteria all autonomous replications are permanently attached to the inner surface of the cell membrane at a site near the cell's equatorial plane, the attachment is essential for replication and for partitioning, or copy distribution. At a particular stage of the cell cycle, then, a new attachment site would be formed for each replicon on the side of the equatorial plane opposite the existing site, triggering a replication cycle during which the newly synthesized DNA molecule would become attached to the new site. The growth of a division septum along the equatorial plane would allow one of the two DNA molecules to remain in each daughter cell. This brilliant theoretical synthesis, years ahead of its time and formulated on the basis of scanty evidence, has served to guide virtually all research on the control of bacterial replication and on the genetics of plasmid autonomy.

The theory predicted that very few genetic functions—only a small part of any plasmid—would be needed for autonomy. This was confirmed by the isolation of derivative plasmids from large segments of DNA that had been deleted but that were still viable. In a study of deletions affecting the staphyloccocal R plasmid p1258 I found that as much as two-thirds of the plasmid could be deleted without affecting the plasmid's autonomy functions. No other type of genome can survive deletions nearly as large as that. More important, there was a "forbidden" region of the staphylococcal plasmids that was never affected by deletions and that turned out to carry all the autonomy functions; deletion of any part of this region destroyed the plasmid's viability.

Similar results have been obtained for many other plasmids, and it is now well established that plasmid autonomy genes are clustered in what Ken-ichi Matsubara of Osaka University has termed a "replication drive unit." In 1966, when my experiments were completed, molecular techniques had not yet advanced to the stage allowing precise determination of the size of the replication drive unit. More recently it has been found that the unit cannot be larger combination, one can generate various sets of fragments that can be pieced together to form a fragmentation map. The location of the plasmid's genes can be determined in several ways, including the analysis of plasmids with structurally identifiable mutations such as deletions and insertions. Some idea of the procedure can be gained by considering the first steps in the analysis of the staphylococcal R plasmid p1258, which has an overall length of some 28,000 base pairs and carries genes for resistance to erythromycin and penicillin and to a number of toxic metal compounds.

The plasmid is first cleaved, by the restriction enzyme EcoRI, into four fragments, which track No. 1 of the gel shows to be respectively about 13, seven, six and two kilobase pairs (thousands of base pairs) large. See illustration on preceding two pages. The actual sequence of those fragments around the circle is determined by a "partial digestion," shown in track No. 2. The sites at which other enzymes cut the plasmid can be determined by a large number of experiments such as the one shown in track No. 3. The remaining tracks show the fragments obtained when derivative plasmids are dissected from which segments bearing known traits have been deleted or into which a transposon has been inserted. Examination of a plasmid with a deletion affecting a particular gene shows which segment has been shortened by the deletion, thereby locating the deleted gene. The insertion of a transposon lengthens a fragment and disrupts the function of any gene into which it is inserted, thus pinpointing the site of the inactivated gene.

By examining only these few physical rearrangements of the plasmid DNA one can get a great deal of information about the structure and genetic organization of the plasmid. By combining the results of a larger number of electrophoresis experiments with the direct determination of a plasmid's entire base sequence (which has been accomplished only for much smaller plasmids) one can hope to obtain the detailed information needed for a complete understanding of the plasmid as a genetic entity.

Plasmid Autonomy
Since plasmids represent the ultimate stage of symbiosis, being dependent on the host cell for all life-support systems except the "autonomy functions" (those that are most intimately linked with its claim to being an organism and that serve to define its individuality), the identification and analysis of those functions reveal the minimal essential components of the living state. Put another way, every plasmid must contain in its genome a solution to the problem of how a nonessential genetic system can be stably inherited and how it can control its own replication and the distribution of its copies so that a constant relationship with its host is maintained. What are those solutions?

The basic theoretical foundation for considering this question was developed in 1963 by Jacob, Sydney Brenner and François Cuzin. They proposed that for any given "replicon," or replication unit, whether it is a bacterial chromosome, a segment of a eukaryotic chromosome, a virus, a plasmid or some other form, replication begins at a specific point (the origin) and proceeds in a sequential and linear manner to another specific point (the terminus), where it stops; an "initiator" substance, encoded by the replicon itself, acts at the origin to trigger replication. They proposed that in bacteria all autonomous replications are permanently attached to the inner surface of the cell membrane at a site near the cell's equatorial plane, the attachment is essential for replication and for partitioning, or copy distribution. At a particular stage of the cell cycle, then, a new attachment site would be formed for each replicon on the side of the equatorial plane opposite the existing site, triggering a replication cycle during which the newly synthesized DNA molecule would become attached to the new site. The growth of a division septum along the equatorial plane would allow one of the two DNA molecules to remain in each daughter cell. This brilliant theoretical synthesis, years ahead of its time and formulated on the basis of scanty evidence, has served to guide virtually all research on the control of bacterial replication and on the genetics of plasmid autonomy.

The theory predicted that very few genetic functions—only a small part of any plasmid—would be needed for autonomy. This was confirmed by the isolation of derivative plasmids from large segments of DNA that had been deleted but that were still viable. In a study of deletions affecting the staphylococcal R plasmid p1258 I found that as much as two-thirds of the plasmid could be deleted without affecting the plasmid's autonomy functions. No other type of genome can survive deletions nearly as large as that. More important, there was a "forbidden" region of the staphylococcal plasmids that was never affected by deletions and that turned out to carry all the autonomy functions; deletion of any part of this region destroyed the plasmid's viability.

Similar results have been obtained for many other plasmids, and it is now well established that plasmid autonomy genes are clustered in what Ken-ichi Matsubara of Osaka University has termed a "replication drive unit." In 1966, when my experiments were completed, molecular techniques had not yet advanced to the stage allowing precise determination of the size of the replication drive unit. More recently it has been found that the unit cannot be larger
than about 3,000 base pairs, or just over a tenth of the pl258 plasmid.

Recent molecular-cloning experiments have defined more precisely the replication drive units of several E. coli plasmids. In these experiments a plasmid is digested with a restriction enzyme and the collection of fragments is mixed with a nonreplicating "selector" segment of DNA generated by the same endonuclease and containing a known marker gene. Since all the fragments are cleaved from DNA by the same enzyme, they have matching and symmetrical unpaired bases at their ends ("sticky ends") and can therefore combine with one another, in any number, order and relative orientation, by base pairing. When the mixture is treated with the enzyme DNA ligase, the base-paired fragments form new, scrambled plasmids: random rearrangements of the original plasmid. When these are introduced into recipient cells, only those that contain the region or regions required for autonomous replication are able to replicate and only those that also contain the selector can be recovered. Treatment with the original endonuclease shows which of the original frag-

PHYSICAL-GENETIC MAP of plasmid p1258 reflects the results of many experiments of the kind shown in the preceding illustration. Locations are given by the kilobase scale, which indicates the distance from the single site at which the restriction enzyme BamHI cleaves the circular molecule; the symbols (see key) mark the recognition sites for different restriction enzymes. Pennants represent various alternative sites at which transposon 551 has been mapped and indicate the orientation of the transposon. Plasmid genes that have been mapped include those for resistance to penicillin (bla), arsenate (asa), arsenite (asi), antimony (ant), erythromycin (ermB), inorganic mercury (merA), organic mercury (merB), cadmium (cad), bismuth (bis) and lead (leo) as well as for the replication origin (ori), the initiator protein (repA) and incompatibility (inc). Genes whose precise location is still not certain are indicated in parentheses.
DIGEST WITH \(R_1 \)

LIGATE, INTRODUCE INTO BACTERIAL CELLS
ISOLATE CLONES AND RECOVER PLASMIDS

DIGEST WITH ENZYME \(R_1 \)

DIGEST WITH ENZYME \(R_2 \)
mements and analysis with a second endonuclease establishes their sequence and relative orientations.

If all replication-function genes are contained within a single original fragment, then that fragment is always found to be present in viable new plasmids. Kenneth N. Timmis, Felipe Cabello and Stanley N. Cohen of the Stanford University School of Medicine found that to be the case for two large E. coli plasmids, F and R6. In both cases a single fragment about a tenth as long as the original plasmid was found to contain the entire replication drive unit and thus to ensure autonomous replication in the same way as the full original plasmid. Further reduction in size of the derivative plasmids indicated that a DNA segment of no more than 2,000 base pairs encompasses the entire replication drive unit of plasmids more than 50 times as long.

If two fragments each contain independently necessary replication functions, both are always found to be present in the new plasmids, without constraint on their relative location. If a restriction-enzyme site falls within the confines of a required gene, again two of the original fragments are always recovered from the new plasmids, but in this case they are always adjacent and in the same orientation as in the original.

Replication Drive Unit

Four elements of a typical replication drive unit have so far been defined experimentally: the origin (the site of initiation of replication), the initiator substance, the genetic functions controlling copy number and those that ensure partitioning, or the distribution of replicates to daughter cells. One central element of the autonomy system is the replication origin, a unique sequence of bases within which the actual "start site" for each replication cycle is situated. A replication origin is defined functionally as the smallest DNA sequence that can serve as the start of a replication cycle.

An extension of the fragment-scrambling experiment makes it possible to isolate the origin sequence. As before, one ligates a mixture of restriction-enzyme fragments with a selector. Now, however, the new plasmids are introduced into a specially engineered bacterial strain. It contains a second, unrelated plasmid to which has been attached a fragment of the first one that is known to encode whatever diffusible substances, such as the initiator protein, are necessary for its replication. As before, the experiment pinpoints a fragment whose presence is required if a scrambled plasmid is to be viable. In this case, however, the required fragment need not include the entire unit because the diffusible substances encoded by that unit will have been supplied by the complementary plasmid already present in the recipient cells. Therefore any fragment that is always present in viable new plasmids must specifically contain the DNA that constitutes the origin sequence. In this way Donald R. Helinski of the University of California at San Diego and his colleagues isolated the origins of the E. coli plasmids R6K and RK2, and by similar methods have been applied to isolate the origins of other plasmids.

In each case the origin region has been found to be several hundred base pairs long. Within that region the synthesis of a new DNA chain always begins at essentially the same base pair. The rest of the origin region presumably contains specific sequences to which various proteins (and perhaps other large molecules) adhere to influence the initiation process. For example, it now appears that the first step in the replication of plasmid (and other) DNA is the traversal of the origin sequence by the enzyme RNA polymerase. This interaction not only synthesizes an RNA chain that primes the replication of the DNA but also separates the two DNA strands, perhaps allowing intranastrand loops to form; these loops may attract the enzyme and other proteins involved in the actual biosynthesis of new DNA.

The first hint of the existence of plasmid genes required for replication came when Jacob, Brenner and Cuzin isolated F-plasmid mutants that were unstable at high temperatures, apparently because of the enzyme functions. Dissection of the original plasmid with enzyme R2 yields a different group of fragments, L, M, Nand O; scrambled plasmids yield M and variety of new fragments. Because only M is always present in viable plasmids it must include autonomy functions; its constant presence shows A and D are adjacent and in same relative orientation in all viable scrambles.

FRAGMENT-SCRAMBLING experiment defines the region responsible for plasmid autonomy functions. A plasmid is diagrammed (top) to indicate the sites at which hypothetical restriction enzymes R1 (colored symbols) and R3 (gray symbols) cleave it. The plasmid is first digested with R1, and the fragments (A–E), mixed with a "selector" fragment (S) having matching ends, are ligated to make a variety of new plasmids, which are cloned in bacteria. Viable plasmids (those containing the autonomy functions) replicate in the bacteria and can be recovered if they also contain the selector. Digestion of the scrambled plasmids with R1 reveals that each contains a different set of fragments, but all of them have the selector and also fragments A and D; the last two must therefore contain all autonomy functions. Dissection of the original plasmid with enzyme R2 yields a different group of fragments, L, M, N and O; scrambled plasmids yield M and variety of new fragments. Because only M is always present in viable plasmids it must include autonomy functions; its constant presence shows A and D are adjacent and in same relative orientation in all viable scrambles.
and a negative repressor, might interact to regulate the rate of replication is not yet clear. It is probably different in different systems. A repressor could control either the rate of synthesis of the initiator protein, the rate at which the initiator interacts with the origin or the frequency with which the origin region is transcribed by RNA polymerase. Any such copy-control mechanism is quite different from the one predicted by Jacob, Brenner and Cuzin, which formally implies the presence of only a positive regulatory element, consisting of a limited number of structural sites to which a replicon must attach to be replicated.

Partition

Jacob, Brenner and Cuzin recognized that if a nonessential genetic element present in a limited number of copies in each cell was to maintain its hereditary stability, there would have to be a mechanism to ensure the equal distribution (partition) of the copies of the element among daughter cells. Such a mechanism has not yet been clearly identified, but the first direct evidence that there is one came from a study in our laboratory of the plasmid mutants that have a temperature-sensitive initiator. As the host cells divide at the elevated temperature the plasmids originally present in them are not destroyed, but neither are they replicated; they are assorted among the dividing cells until no cell has more than one plasmid.

We did a statistical analysis of this assortment in the case of two different plasmids, one with an average copy number between two and three and the other with about 30 copies per cell. In both cases the copies originally present were divided approximately in half at each generation until there was one copy per cell. Thereafter at each cell division one daughter cell had a single plasmid and the other cell had none. We concluded that at least these two plasmids do contain a specific equipartition mechanism. Here again the mechanism is likely to have at least two components, an effector molecule and a recognition site, and the cell envelope is probably involved.

Nordström and Rownd independently have recently found that when a particular segment of an R plasmid is excised by recombinant-DNA techniques, the plasmid becomes unstable and is inherited in an apparently random way; the tentative interpretation is that the deleted segment must be implicated in equipartition. In collaboration with Carmen Sanchez-Rivas of the University of Paris we have studied plasmids in staphylococcal protoplasts: bacteria from which the tough cell wall has been removed, leaving only the thin cell membrane. When staphylococcal protoplasts regenerate a cell wall, many of the regenerated cells fail to inherit plasmids that were originally present. The plasmid DNA is not physically expelled from the protoplasts and it can replicate normally, and so the failure to inherit must be related to a series of cell divisions that take place during cell-wall regeneration. Because the normal location of the plane of division is determined by the cell wall these divisions are abnormal, often resulting in "cells" without a chromosome (which of course cannot survive) or cells without any plasmid.

This result implies that the intact cell wall is intimately involved in the coordination of division and partitioning, in keeping with the theory of Jacob, Brenner and Cuzin. The theory, however, specified that after replication the two copies of a replicon are automatically separated, one to each daughter cell. It is now clear that this cannot be true for plasmids because of a phenomenon, unique to plasmids, known as incompatibility.

Incompatibility

Pairs of closely related plasmids usually cannot be stably maintained together in a single cell line: they are "incompatible." It may be possible to develop a line containing two such plasmids, but it is difficult to keep them both present. As the cells proliferate, subclones with only one or the other of the two plasmids are continually generated; the culture approaches, asymptotically, a state in which it consists of two pure sublines, one for each of the original plasmids. Frank C. Hoppensteadt of the University of Utah and I have shown, by statistical analysis of experiments done in our laboratory and in Nordström’s, that the process is clearly stochastic: the results
can be interpreted as the net effect of random replication and random assortment. Two incompatible plasmids A and B in the same cell form a common pool from which individual copies are chosen at random for replication until the total number has doubled; then they are again chosen at random for partitioning, with half of the total going to each daughter cell. The relative numbers of A and B will therefore vary from cell to cell in a mathematically predictable way, even though the sum of A and B remains constant. Since the two plasmids have similar or identical replication drive units, they are not recognized as being different by the plasmid and cellular systems that regulate replication and partitioning. And so the disproportions persist, giving rise (at a predictable rate determined by the overall copy number) to progeny cells having only A or only B.

In contrast to plasmids with similar or identical replication drive units, pairs of unrelated plasmids can be maintained together in a cell and are regarded as being compatible; naturally occurring bacteria are quite commonly observed to have as many as seven or eight different plasmids. The contrast between compatibility and incompatibility indicates a high degree of specificity in the interactions between cells and plasmids. There must be specific gene loci on a plasmid that are responsible for the differing behavior of compatible and incompatible plasmids. Perhaps plasmid partition is specific for each incompatibility type, in that any two incompatible plasmids share the same partition apparatus. In that case there must be at least as many different partition systems as there are different groups of mutually incompatible plasmids, and a substantial number of such incompatibility groups have already been identified in several bacterial species. All of this suggests that the specificity of the partition system is determined solely by the plasmid.

Consideration of plasmid partition and incompatibility bears directly on the essence of the symbiotic state. For most of its needs a subcellular endosymbiont presumably exploits a host structure, metabolic pathway or other function for the same purpose as the host itself does. For example, a plasmid presumably depends on a host RNA polymerase to transcribe its DNA and on host DNA polymerases for DNA replication and repair. Alternatively a subcellular organism can subvert a host function to serve a need peculiar to itself. For example, the system whereby a bacterial cell transports the sugar maltose across its membrane is exploited by bacteriophage lambda for a very different purpose: as its site of attachment to the wall of a cell it is infecting. In other cases, such as the control of copy number, there is presumably no appropriate cellular function to be exploited, and the plasmid itself apparently encodes whatever control molecules are required.

What about partition, where a variety of plasmids must each be able independently to develop a specific structural interaction with the host cell? I would suggest that each plasmid may have 'learned' to attach itself to a different structure in the cell (perhaps on the interior of the cell membrane or even, as suggested by Bruce C. Kline of the Mayo Clinic, on the chromosome itself) by evolving a protein that binds to a specific site. If this notion is correct, the isolation and study of such systems should help to clarify the special kind of symbiosis at the molecular level that is the hallmark of the plasmid way of life.

REPLICATION AND PARTITION of compatible plasmids (a) are contrasted with the same processes in incompatible plasmids (b). Unrelated plasmids are "compatible" and can be maintained together in a cell. They may replicate at different stages of the cell cycle, but both types replicate and the copies are assorted equally during cell division. Closely related plasmids are "incompatible." One or the other is chosen at random for replication (middle columns) and at cell division they are randomly assorted (right), that is, sister plasmid copies are not always separated from each other. The result is that cell lines lacking either one plasmid or the other are inevitably produced.