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High-speed atomic force microscopy (HS-AFM) is a unique tool

for molecular imaging. It can directly visualize protein

molecules during their functional activity at high spatiotemporal

resolution, without a marker being attached to the molecules.

Molecular dynamics filmed with HS-AFM can provide

mechanistic insights into the functional molecular processes

that are hard to be attained with other approaches. In this mini

review, I highlight some of recent relevant studies of proteins by

HS-AFM imaging after brief descriptions of AFM and HS-AFM.
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Introduction
In AFM imaging of biological samples, a micro-cantilever

with a sharp tip at its free end is excited to oscillate at its

first resonant frequency. The oscillating tip intermittently

contacts with the sample surface, resulting in alteration of

the cantilever’s oscillation amplitude. The cantilever

deflection is detected with an optical beam deflection

detector, in which a laser beam reflected back from the

cantilever illuminates a position-sensitive photodetector.

The laser spot on the photodetector moves up and down

as the cantilever oscillates. During the raster-scanning of

the sample stage in the XY direction, the cantilever

oscillation amplitude (and hence, the tip-sample interac-

tion force) is held constant by moving the sample stage in

the Z-direction via feedback control. Consequently, the

sample stage movement traces the sample surface. The

feedback signal that is proportional to the Z-scanner

displacement is used to form a topography image of

the sample surface. Note that the intermittent tip-sample

contact avoids the sample being dragged laterally by

the tip. Because of the chasing-after nature of feedback

control, the tip-sample interaction force cannot be

perfectly held constant but varies; this feedback error
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becomes larger with increasing XY-scan speed. To

minimize the error under fast scanning, the response

speed of all components contained in the feedback loop

has to be increased. To this end, various devices and

techniques have been developed [1,2�], including short

(7–10 mm) cantilevers with a high resonant frequency in

water and a small spring constant [1,3,4], a dynamic feed-

back controller enabling the minimization of AFM-tip

impact on the sample during fast scanning [5], and some

others [2�]. Through these long-term efforts, HS-AFM for

biomolecular imaging was established in 2008. The feed-

back bandwidth (FB) of our system, which determines the

system’s speed performance, is about 110 kHz when it is

used together with a short cantilever with resonant

frequency of 1.2 MHz in water. The highest possible

imaging rate depends not only on FB but also on imaging

parameters (e.g. the scan range and the number of scan

lines) and sample fragility [6]. In our system, it is typically

�15 frames/s (fps) in imaging individual protein molecules

without retarding their function [6]. Currently, devices

limiting FB are the Z-scanner and the amplitude detector.

The employment of a new amplitude detection method [7]

andrecentadvancedpiezoactuatorshasapotential to increase

the imaging rate up to 60–80 fps. HS-AFM systems and short

cantilevers are now commercially available, although their

speed performance largely varies among the products.

HS-AFM has been used for not only imaging proteins but

also live cell imaging [8,9], chemically oriented studies on

DNA/RNA [10,11], mechanical measurements of cells and

biopolymers [12�,13], and others. However, in this mini

review I focus on HS-AFM imaging of proteins (other than

transmembrane proteins). For HS-AFM imaging of

transmembrane proteins, see the recent review [14�].

HS-AFM studies during 2010�2014
Even before the establishment of HS-AFM technology in

2008, HS-AFM imaging was performed on proteins, DNA

and lipid membranes to test and explore the capability of

HS-AFM systems under development (most of these

studies are listed in [15�]). During 2010–2014, a few

molecular processes including dynamic structural

changes and dynamic interactions in protein systems

were successfully filmed with HS-AFM, as reviewed in

Ref. [16��]. Among these studies, the work on dynamic

processes of myosin V walking on actin filaments is a

milestone in the history of biomolecular imaging [17��].
This study provided a new view for the force generation

and usage of ATP energy in myosins. HS-AFM imaging

of the a3b3 subcomplex (stator ring) of F1-ATPase also

led to a surprising discovery [18�]. It revealed that the

three different chemical (and structural) states rotated over
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the three b subunits, indicating that the g subunit is

passively subjected to torque to rotate. This finding

predicted that objects completely different from the g
subunit might be able to rotate when they were inserted

into the central cavity of the a3b3 ring. This prediction

was confirmed later for F1-ATPase [19], and similarly for

V1-ATPase [20].

HS-AFM studies during 2015–2019
During the last four years and a few months, the number of

publications of HS-AFM imaging of proteins was abruptly

increased (more than 60), compared to the previous five

years. This is due partly to the increased number of

HS-AFM users and the increased number of their colla-

borators convinced of the power of HS-AFM. The targeted

proteins range from ion channels [21–24] to membrane-

transforming proteins [25,26�,27��], molecular chaperones

including assembly chaperones [28�,29,30], enzymes

including cas9, proteasome and protein disulfide isomerase

[31–37], cytoskeletons [38–40], DNA binding proteins

[41,42], pore-forming toxins [43–45], clock proteins [46],

protein exporters [47], motor proteins [48,49], intrinsically

disordered proteins including amyloid-related proteins

[50–52], bacterial cell division-controlling proteinsMinDE

[53], and even to the nuclear pore complex [54,55]. Five

studies among these are highlighted below.

ESCRT-III proteins

The endosomal sorting complexes required for transport

(ESCRT) are involved in various processes that need lipid

membrane remodelling and scission, including multivesicu-

lar body biogenesis, cytokinesis and viral budding [56].

Among ESCRT complexes, the filamentous ESCRT-III

complex, consisting of core subunits, Vps20, Snf7, Vps2,

and Vps24, plays an essential role in membrane deformation

and scission together with the AAA + ATPase Vps4. Unlike

other membrane-remodelling proteins such as dynamin,

ESCRT-III propels outward membrane budding. The

endogenous ESCRT-III filaments in Vps4-depleted cells

were observed as conical spirals by electron microscopy [57].
Figure 1
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100 nm0.00 s 50.00 s 142.00 s

HS-AFM images showing disassembly of ESCRT-III spirals caused by the A

polymerization of Snf7, followed by binding of Vps2 and Vps24 to the spiral

injected. Then, ATP and Mg2+ were added and imaging was started 22 s lat
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ESCRT-III filaments are mainly formed by polymerization

of its main component, Snf7, on the membrane. Indeed,

HS-AFM imaging of Snf7 showed that it polymerizes into

concentric rings and spirals on the surface of lipid bilayers

[26�]. When they were disrupted by the cantilever tip, the

broken polymers spontaneously formed smaller rings,

suggesting a preferred curvature (25–30 nm radius) for

Snf7 polymers. Since the polymers grow into larger spirals,

they accumulate tension like a spiral spring. Thus, it was

postulated that in cellular conditions unbend strain (and

energy) would be accumulated during the growth of the

spiral spring and eventually released through shrinking of the

spiral diameter and buckling of the inner spirals, causing the

membrane to buckle, bud and undergo abscission [26�]. To

examine this idea in more realistic conditions, HS-AFM

imaging and fluorescence imaging were performed in the

presence of Snf7, Vps2, and Vps24 [27��]. Vps2/Vps24 were

observed as lateral copolymers along Snf7, thickening the

polymers, and more importantly stalled the growth and

accumulation of Snf7 polymers. HS-AFM imaging in the

presence of Snf7, Vps2, Vps24, the ATPase Vsp4 and ATP,

Snf7 concentric rings and spirals were observed to undergo

dynamic reorganization (growth and shrinking) by subunit

turnover (Figure 1 shows spiral disassembly),  and finally

reach a dynamic steady state. This dynamics was not

observed without Vsp4 and ATP, and thus, the subunit

turnover is fueled with ATP turnover. Although these results

have enriched our knowledge of dynamic events occurring in

this system, it is still elusive how these events result in

membrane transformation and scission.

Chaperonin GroEL

This bacterial molecular chaperone with a double-ring

structure assists proper folding of many proteins, in coopera-

tion with the co-chaperonin, GroES, which binds to the ends

of GroEL cylinder depending on the nucleotide state of

GroEL[58].ThedynamicGroEL–GroESinteractionreflects

the allosteric intra-ring and inter-ring communications and

the chaperonin reaction. Therefore, revealing this dynamic

interaction is essential to understanding these fundamental
234s 300s
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Current Opinion in Chemical Biology

TPase reaction of Vps4. The spiral assemblies were formed by

 polymers. After all soluble components were washed out, Vps4 was

er (t = 0). Imaging rate, 0.25 fps.
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issues. Nevertheless, these issues have long been

controversial. This is mostly because of a lack of technique

capable of identifying at which ring GroES binding and

release are taking place during chaperonin cycles. For

HS-AFM imaging, D490C GroEL mutant biotinylated

at Cys490 was tethered in a side-on orientation onto the

2D crystal surface ofa tamavidin 2 mutein [28�]. Thefilmed

images led to new findings and thereby provided new

insights into the molecular processes. It was revealed

that the GroEL–GroES interaction proceeds mainly in

the order of B" ! F ! B# ! F, where B and F represent

asymmetric GroEL:GroES1 (bullet) and symmetric

GroEL:GroES2 (football) complexes, respectively, and

the vertical arrows represent the polarity of bullet

complexes. That is, in the main pathway of a cycle time

of �5 s GroES binding and release take place alternately

between the two rings (Figure 2a). This alternate rhythm

was disrupted at a relatively large frequency

(25–33%), resulting in branching into the side pathway,

B" ! F ! B" ! F, with a cycle time of �3 s (Figure 2b).

From the analysis of residence time of bound GroES in the
Figure 2

(a)

(b)

(c)

ADP ATP ATP
F*

ATP ADP-Pi ADP

HS-AFM images showing dynamic binding and release of GroES at the two
+–ATP. Imaging rate, 4.3 fps. The vertical arrows show the polarity of bullet

changes in bullet complexes appearing in the main pathway of chaperonin 

bullet complexes appearing in the side pathway of chaperonin reaction. (c) 

communications revealed by lifetime analyses of intermediate states appea

release, and rate constants in transitions occurring in the top and bottom ri

(F*) shown in pale colors are apparently the same as but kinetically differen

GroES residence time distribution provided the values of four rate consta

1/k1 + 1/k2 = 1/kFB (marked with the yellow bars) and k3 = 1/kBF (marked with

important inter-ring communication; ATP hydrolysis into ADP–Pi in cis-ring t

binding and subsequent GroES binding occur immediately after ADP releas

and therefore, ADP dissociation limits the B-to-F transition rate.
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main pathway, how the two rings communicate with each

other was revealed (Figure 2c). Strikingly, the timing of

ATP hydrolysis into ADP–Pi in a cis-ring coincides with

the timing of ADP release from the opposite trans-ring.
Therefore, the ATP hydrolysis works as a timer to control

the timing of ADP release from the opposite ring. This

communication is functionally important; it ensures the

release of substrate protein from the trans-ring before it is

capped with GroES. A recent biochemical study for GroEL

mutants reported a striking result that the two rings of

GroEL separate and exchange between complexes [59].

However, this separation did not appear in the HS-AFM

images, possibly due to the tethering of GroEL to the

surface. The ring separation and exchange will be directly

visualized with HS-AFM.

Molecular chaperone ClpB

This AAA + molecular chaperone and its yeast homolog

Hsp104 disentangle and reactivate aggregated proteins

[60]. HS-AFM images of ClpB hexamers in the presence

of ATP showed a variety of conformations from round and
ADP-Pi ADP

ATP ATP
F*
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 rings of GroEL in the presence of denatured rhodanese and Mg2

 complexes (a, b). (a) HS-AFM images showing alternate polarity

reaction. (b) HS-AFM images showing non-alternate polarity changes in

Kinetic scheme of main reaction pathway and inter-ring

red in HS-AFM images. The nucleotide states, GroES binding and

ngs are shown in red and blue, respectively. The football complexes

t from the football complexes formed immediately before. Analysis of

nts, k1, k2, k3, and k4, leading to a new finding of two coincidences:

 the green bars). The latter coincidence indicates a functionally

riggers ADP release from the opposite trans-ring. Note that ATP

e (since the ATP and GroES concentrations used are nearly saturated),
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Figure 3

5 nm

9.8s 10.0s 11.3s 19.1s 20.3s
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HS-AFM images showing massive conformational changes of DN-ClpB during the ATPase reaction. Different structures appeared, including a

twisted-half-spiral ring (9.8 s, 20.3 s), a round ring (11.3 s), a spiral ring (10.0 s), and an intermediate between spiral and twisted-half spiral rings

(19.1 s). Imaging rate, 10 fps.
spiral rings to twisted-half-spiral rings, and even to open

rings [29] (Figure 3). The twisted-half-spiral form (dimer of

trimers) was identified in this study for the first time. These

conformations were observed to transform from one to

another during the ATPase cycle, with a frequency similar

to the ATPase rate per hexamer. These structural changes

were drastically decreased in a middle-domain mutant that

lost disaggregation activity but retained ATPase activity.

Thus, ClpB performs protein disaggregation through these

structural changes, in particular through large height

increase in the spiral and twisted-half spiral rings, which

possibly acts to extend and disentangle aggregated proteins

trapped in their central cavity. Moreover, individual roles of

the two ATPase cores, AAA1 and AAA2, were clarified by

HS-AFM imaging of ClpB mutants. ATP binding to the

AAA1 domain induces oligomerization of ClpB, and

the hexameric state is stabilized by ATP binding to the

AAA2 domain. The structural changes between different

ring forms are caused by ATP hydrolysis on the AAA2

domain. Note that the structural analysis of ClpB is

considerably difficult with other methods, since ClpB

conformations are populated among the four types as well

as their subtypes.
Figure 4

10 nm

0s 2.25s 10.5s

HS-AFM images showing unfolding of the peptideglycan layer binding doma

was solubilized with amphipol. The large globule corresponds to the transm

domain of dimeric MotS. The small globule corresponds to the C-terminal d

region. These two globules are linked through a flexible unstructured chain.

fast diffusional motion. Imaging rate, 4 fps.
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Bacterial rotary motor’s stator MotPS

Some bacteria possess two types of flagella rotary

motors that are driven by a transmembrane electrochemical

gradient of either N+ or H+ ions [61]. The motors are

switched on/off depending on the ionic environment where

bacteria inhabit in.However, this switching mechanism has

long been elusive. This fundamental question was quickly

solved by HS-AFM imaging of an amphipol-dissolved

MotPS protein complex from Bacillus, which functions as

a stator of the Na+-driven rotary motor [49]. The images

captured in the presence of N+ ions showed a larger globule

connected to a smaller globule through a flexible

linker (Figure 4, 0–10.5 s). The larger and smaller globules

correspond to the transmembrane region of the MotPS

complex and the peptidoglycan biding region of MotS,

respectively. When the ionic condition was changed from

Na+ to K+, the smaller globule was unfolded into mobile

chains (Figure 4). This structural change was reversed

when the ionic condition was changed from K+ to

Na+. Thus, it was clearly revealed that the transitions

between ordered and disordered conformations of the

peptidoglycan binding region of MotS are responsible for

switch on/off of the Na+-driven flagella motor.
19.75s 24.5s
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in of MotS upon displacement of Na+ with K+. The MotPS complex

embrane domain of MotPS containing MotP and the N-terminal

omain of dimeric MotS containing the peptideglycan layer binding

 At 19.75 s, the C-terminal domain of MotS is unfolded, exhibiting its

www.sciencedirect.com
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Figure 5

50 nm

20s 42s 97s 115s 165s(a)

(b) (c)

200 nm

Dynamin + Amphiphysin

Dynamin + Amphiphysin

Dynamin

100 nm

Dynamin
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HS-AFM images and electron micrographs (EMs) showing clustering of lipid tube-surrounding dynaminn helices. (a) HS-AFM images showing

dynamic clustering of lipid tube-surrounding dynamin–amphiphysin helices in the presence of GTP. 1 mM GTP was added at 42 s. After clustering

of dynamin–amphiphysin helices, their helical pitch was narrowed from 22.0 nm (before GTP addition) to 15.7 nm. Bare zones in the lipid tube

between protein clusters became thinner at 165 s. Imaging rate, 1 fps. (b) EMs showing membrane vesicles formed by dynamin–amphiphysin and

dynamin alone in the presence of GTP. (c) EMs showing amphiphysin-dependence of dynamin ring clusters formed around rigid lipid nanotubes

containing glycolipid galactosylceramide in the presence of GDP and vanadate.
Membrane fission protein dynamin

In neuronal synapses, synaptic vesicles containing

neurotransmitters are fused with the presynaptic terminal

membrane, resulting in the release of neurotransmitters

to the synaptic gap. To recycle membranes for preparing

synaptic vesicles again, clathrin-mediated endocytosis

takes place at the presynaptic terminal [62]. A GTPase,

dynamin, works together with a BAR domain protein,

amphiphysin, to produce an inwardly budded membrane

tube by forming a spiral complex around the membrane,

and then GTP hydrolysis by dynamin results in mem-

brane fission, producing membrane vesicles. Several

mechanisms have been postulated for membrane fission

by dynamin [63]. However, any model has never been

proven experimentally. HS-AFM imaging was performed

for membrane tubes surrounded by spiral oligomers of

dynamin–amphiphysin complexes [25], leading to a new

mechanistic insight into membrane fission by dynamin.

Upon addition of GTP, the regularly packed dynamin–

amphiphysin complexes in a spiral form were disrupted,

resulting in the formation of regions possessing clustered

dynamin–amphiphysin complexes and bare membrane

regions lacking the proteins (Figure 5a). Remarkably,

membrane constrictions were observed at the bare mem-

brane regions, and the diameter of the bare regions were

getting smaller with time. Interestingly, the volume

of the membrane area underneath each dynamin–

amphiphysin cluster was similar to that of presynaptic

vesicles. EM observations of membrane vesicles
www.sciencedirect.com 
produced by dynamin–amphiphysin complexes in the

presence of GTP confirmed this volume size coincidence.

Membrane vesicles were also produced by dynamin alone

in the presence of GTP but the vesicle size was much

larger than those produced by dynamin–amphiphysin

(Figure 5b). Consistent with this result, the size of

dynamin clusters formed upon the addition of GDP

and vanadate was also much larger than that of

dynamin–amphiphysin clusters (Figure 5c). From these

observations, it was put forward that a pair of neighboring

dynamin–amphiphysin clusters twists the bare membrane

region between them. This twist causes membrane fission

at the bare region, resulting in isolation and release

of protein-clustered regions from the membrane tube,

followed by dissociation of dynamin–amphiphysin

from the released protein–vesicle complex. Nonetheless,

it is still elusive how a pair of neighboring dynamin–

amphiphysin clusters twists the bare zone and why the

membrane tube undergoes scission by this twist despite

fast diffusion of lipids.

Conclusion
Before the advent of HS-AFM, the protein structure

revealed was only static snapshots, while dynamic events

observed were only those of an optical maker attached to

proteins. Large gaps have therefore remained in our

understanding of dynamic molecular processes occurring

during the functional activity of proteins. The spatiotem-

poral resolution of HS-AFM is moderate but it provides a
Current Opinion in Chemical Biology 2019, 51:105–112
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unique opportunity of assessing structure and dynamics

simultaneously. The power of this new assessment has

been demonstrated by growing number of HS-AFM

imaging studies carried out mostly on purified protein

systems. The functionality of HS-AFM is now being

expanded. One of newly added functions is sample

manipulation with controlled strong tip-force application

to operator-specified loci of the sample during successive

imaging. This technique was recently used to break

the high molecular weight complexes of peroxiredoxin,

leading to a discovery of the involvement of negatively

charged lipids in the structural and functional conversion

of this protein [31]. This technique also revealed that

two inner-lumen proteins of doublet microtubules (MT)

in Chlamydomonas flagella stabilize MT against force-

induced depolymerization of MT [64�]. Tip-scan

HS-AFM is already developed and combined with

fluorescence microscopy [65], facilitating AFM imaging

of the surfaces of live cells [66�] and isolated organelles.

The next targets of this combined system would be

dynamic molecular processes occurring in the interior

of de-roofed cells [67�]. Although not yet established,

HS-AFM combined with optical tweezers will enable

observing protein molecules under an external force;

unfolding/refolding processes and motor proteins under

backward/forward forces. Moreover, the temporal

resolution of HS-AFM will be improved at least 4-times

(�15 ms) in the near future. Thus, HS-AFM will further

open new dimensions in bioimaging.
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