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ABSTRACT: While high lipophilicity tends to improve potency, its effects on
pharmacokinetics (PK) are complex and often unfavorable. To predict clinical PK
in early drug discovery, we built human physiologically based PK (PBPK) models
integrating either (i) machine learning (ML)-predicted properties or (ii) discovery
stage in vitro data. Our test set was composed of 12 challenging development
compounds with high lipophilicity (mean calculated log P 4.2), low plasma-free
fraction (50% of compounds with fu,p < 1%), and low aqueous solubility.
Predictions focused on key human PK parameters, including plasma clearance
(CL), volume of distribution at steady state (Vss), and oral bioavailability (%F).
For predictions of CL, the ML inputs showed acceptable accuracy and slight
underprediction bias [an average absolute fold error (AAFE) of 3.55; an average fold error (AFE) of 0.95]. Surprisingly, use of
measured data only slightly improved accuracy but introduced an overprediction bias (AAFE = 3.35; AFE = 2.63). Predictions of Vss
were more successful, with both ML (AAFE = 2.21; AFE = 0.90) and in vitro (AAFE = 2.24; AFE = 1.72) inputs showing good
accuracy and moderate bias. The %F was poorly predicted using ML inputs [average absolute prediction error (AAPE) of 45%], and
use of measured data for solubility and permeability improved this to 34%. Sensitivity analysis showed that predictions of CL limited
the overall accuracy of human PK predictions, partly due to high nonspecific binding of lipophilic compounds, leading to uncertainty
of unbound clearance. For accurate predictions of %F, solubility was the key factor. Despite current limitations, this work encourages
further development of ML models and integration of their results within PBPK models to enable human PK prediction at the drug
design stage, even before compounds are synthesized. Further evaluation of this approach with more diverse chemical types is
warranted.
KEYWORDS: physiologically based pharmacokinetics, lipophilicity, machine learning, drug-like properties, protein binding

■ INTRODUCTION
Over the past 20 years, the prediction of clinical pharmacoki-
netics (PK) hasmoved away from empirical and nonmechanistic
methods toward in vitro to in vivo extrapolation (IVIVE)
embedded into physiologically based PK (PBPK) models.1 In
2006, Jones et al.2 published the first study demonstrating
improved predictive performance of mechanistic human PBPK
models compared to allometric scaling of PK parameters derived
from animal species. Since then, PBPK has become firmly
established as a standard technique of drug discovery and
development.3 Although PK studies in multiple animal species
are no longer necessary in support of allometric scaling,
uncertainties and challenges in quantitative IVIVE remain, and
animal data are still frequently used to derive empirical scaling
factors to support PBPK-based prediction of clearance or
volume4 or to learn about the complex interplay of drug specific
and physiological factors governing in vivo absorption.5

However, for both ethical6 and scientific7 reasons, the
movement toward more physiologically relevant human in

vitro assays continues. More advanced mechanistic in vitro
tools8−10 combined with model-based analyses11−13 can
enhance the prediction of clinical PK, while advances in the
commercial PBPK modeling platforms extend their ability to
integrate complexities such as transporter−enzyme interplay14
and extrahepatic metabolism.15 Human PBPK models may also
play a role in drug discovery, when experimental data are
limited.16,17 To use PBPK models as early as possible,18 a
relevant consideration is the application of machine learning
(ML) methods to predict in vitro properties related to drug
absorption, metabolism, distribution, and excretion (ADME).19

Prediction of primary human PK parameters such as CL and Vss
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directly from the chemical structure usingMLmodels trained on
larger data sets was recently demonstrated.20 However, in the
absence of explainable and causal ML methods,21 this approach
delivers limited mechanistic insights and does not fit with the
current integrative bottom-up paradigm used in drug discov-
ery.18 In addition, the size of clinical PK data sets (approx. 1400
drugs22) sets an inherent limit to the structural diversity
captured by such models, at least until transfer learning and
multitask ML techniques reach maturity.23 Use of the higher
volumes of measured in vitro, human relevant, ADME data for
chemical structures from industrial development pipelines offers
access to a broader chemical diversity for model building, and
the subsequent combination of predicted properties within a
PBPK model allows simulation of concentration versus time
profiles and thus prediction of primary PK parameters.18 An
additional advantage of combining ML-predicted ADME
properties and PBPK models already at the early discovery
stage can be the continuity that this provides with the model
accompanying the compound as it progresses to the later
discovery stages and then through early to late stage clinical
development.3

The IVIVE methods are limited when molecules exhibit
properties beyond the typical drug-like space, such as high
lipophilicity, low metabolic turnover,24 low free fraction in
plasma (fu,p),25 and low solubility,26 because such properties
limit the reliability of routine first-line in vitro assays or are
outside the assays’ dynamic range. Reliable measurements might
be possible with more refined assays (e.g., see a recent review of
advanced techniques for the measurement of plasma protein
binding for highly bound compounds27), and so,ML predictions
may therefore offer a valuable alternative in the future, if they can
be built based on sufficiently large, accurate, and structurally
diverse in vitro data sets. This paper sets out predictions of
clinical PK after intravenous (IV) and oral dosing (PO) for a set
of 12 Roche development compounds with extreme properties,
which make prediction from in vitro data especially challenging.
The defining property of our data set is high lipophilicity (a

mean calculated log P of 4.20; range 2.28−6.68). While high log
P often contributes to increased pharmacodynamic potency, it
also profoundly influences a number of key drug-like properties,
including decreases in solubility, free fraction in plasma, and
metabolic stability, as well as increases in permeability and tissue
binding (Figure 1).28,29

Despite these challenges, the number of lipophilic drug
candidates is steadily increasing across the industry, likely driven
by higher difficulty and diversity of pharmacological targets.30

Therefore, to facilitate compound selection and avoid clinical
failures, early predictions of human PK for highly lipophilic

compounds are important. Human PBPK models offer an ideal
platform to integrate the complex effects of lipophilicity, a task
that is often unfeasible by looking at individual properties, their
simple ratios,28 or ligand efficiency metrics.31 This study
describes a retrospective analysis comparing bottom-up PBPK
predictions based only on ML-generated properties to those
based on the first-line in vitro data measured during drug
discovery. While the small size of this data set precludes strong
conclusions, the clinical data evaluated are largely unpublished
and therefore are unseen by the commercial ML models applied
in this study.

■ EXPERIMENTAL SECTION
Test Compounds and Clinical PK Data. The 12

compounds in this study were selected based on the availability
of clinical PK data obtained after IV and PO dosing to healthy
volunteers. Six compounds were from projects aiming at central
nervous system targets, four were for the treatment of metabolic
and cardiovascular disease, and two were for oncology
treatments. Basic physicochemical and PK properties are
presented in Table 1. The collected data were obtained from
phase 1 studies performed in six to eight healthy volunteers,
mostly males. The IV doses were administered as short infusions
in 8 of the 12 cases as a microdose (an IV dose≤ 0.1 mg) (Table
S1). The PO doses were administered as capsules and tablets or
as a solution in either the fasted or the fed state (Table S1).
Software. ML input parameters for the PBPK models were

predicted with ADMET Predictor 10.1.0.1, and the PBPK
models were developed in GastroPlus version 9.8.001. Both
software applications are from Simulations Plus Inc.32

Modeling Strategy. The step-by-step process to construct
models and assess PBPK simulations is summarized below.

1. ADMET Predictor was used to generate ML predictions
for all inputs to PBPKmodels by loading a file of chemical
structures using the Import Structure menu option in
GastroPlus.

2. For each compound, a mean observed plasma concen-
tration versus time profile at the given IV dose in
milligrams was constructed by taking the arithmetic mean
of concentrations across all individuals at each measured
time point.

3. PBPK simulations were run for the specified IV dose using
the default GastroPlus humanmale physiology. Simulated
concentrations were compared to mean observed
concentrations from step 2. The predicted and observed
PK parameters, Vss and CL, were also calculated and
compared (results are presented in Figure 2A,C and Table
2 in columns headed ML).

4. ADMET Predictor estimates of fu,p, blood/plasma
concentration ratio (Rb/p), and intrinsic hepatic
metabolic clearance (CLint) were replaced with properties
measured in vitro, and simulations and assessments were
repeated (results are presented in Figure 2B,D and Table
2 in columns headed in vitro).

5. For assessment of simulated oral PK, the PBPK
disposition models were applied, and drug absorption
was simulated with the default advanced compartmental
absorption and transit (ACAT)models for either fasted or
fed state human gastrointestinal physiology depending on
the clinical study being predicted (Table S1).

6. For one oral dose (for dose selection criteria, see
Supplementary Material�Data analysis of clinical PK

Figure 1. Modulation of lipophilicity causes complex changes in
compound PK. Integrative PBPK models can provide a way to predict
these effects and estimate an efficacious dose.
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profiles after PO administration), a single observed
plasma concentration versus time profile was constructed
by taking the arithmeticmean of measured concentrations
at each time point across all individuals.

7. PBPK model simulations of oral PK based on only ML
inputs were evaluated. Simulated concentrations were
compared to mean observed concentrations. The
predicted and observed PK parameters: area under the
concentration versus time curve extrapolated to infinity
(AUC), maximum concentration (Cmax), and %F were

also calculated and compared (Figure 3A and Table 3
column 3).

8. A 1, 2, or 3 compartmental model was fitted to the mean
observed IV PK profile from step 2 and added to
GastroPlus to describe systemic clearance and distribu-
tion. The hepatic first pass extraction ratio was estimated
as the ratio of systemic blood clearance to liver blood flow.
Intestinal metabolism was assumed to be negligible.

9. PBPK model simulations of absorption based on ML
inputs for absorption were evaluated. Simulated concen-

Table 1. Basic Physicochemical and PK Properties of the 12 Test Compounds

ID MW log Pa pKa
b,c Rb/pd fu,pe (%) CLf (L/h) Vss

g (L) Peff
h (cm/s × 10−4) Aqueous solubilityi (μg/mL)

pH for
solubility %F

1 465 4.71 2.2b, 7.1a 0.7 0.16 16.6 35 4.2 0.02 7 53
2 326 4.55 2.9b, 3.8b 0.76 1.4 8.0 1150 7.5 0.3 7 53
3 447 4.68 1.1b, 4.5b 0.76 0.10 2.3 511 1 <1 7 30
4 386 2.33 neutral 1.01 17.0 10.5 56 0.6 2600 6.8 102
5 438 3.91 8.6b 0.69 1.2 18.1 225 1.6 5 6.5 n/a
6 445 2.40 2.3b 0.59 5.6 3.8 50 3.7 10 7 72
7 463 3.93 1.5b, 11.2a 0.64 0.09 0.73 308 1.8 1 7.2 22
8 410 3.82 1.8b, 3.2b,5.6b 0.75 13.2 10.0 203 3.5 63 7 134
9 566 6.41 2.2b, 4.4b 0.65 0.10 14.4 3360 1.7 13 1 11
10 483 4.69 2.3b, 7.2b, 10.3a 2.6 0.30 31.8 469 2.5 0.019 7.3 34
11 617 6.68 11a, 4.5m, 3.6m 0.7 0.10 0.53 65 3.3 <0.05 7 13
12 363 2.28 4b 0.69 28.0 2.65 107 2.5 140 7 100
aADMET Predictor. bADMET Predictor: a = acid, b = base, m = mixed (mixed pKa is assigned when an ionizable group cannot be defined as
strictly acidic or basic). cBlood to plasma concentration ratio measured in house. dFraction unbound in plasma measured in house. eObserved
plasma clearance. fObserved volume of distribution. gJejunal permeability scaled from Caco-2 apparent permeability. hMeasured in buffer at the
specified pH (see Table S3 for biorelevant solubility). iAbsolute bioavailability estimated with NCA.

Figure 2. Predicted and observed human CL and Vss. (A) CL predicted from ML inputs; (B) CL predicted from measured in vitro data (fu,p, Rb/p,
and hepatocyte CLint); (C) Vss predicted from ML inputs; and (D) Vss predicted from measured in vitro data (fu,p and Rb/p). Green and red dotted
lines represent lines of unity and 2-fold prediction error, respectively.
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trations were compared tomean observed concentrations,
and predicted and observed PK parameters were
compared (Figure 3B and Table 3, column 4).

10. PBPK model simulations of absorption based on
measured inputs for absorption were evaluated. Predicted
aqueous solubility, biorelevant solubility, and jejunal
permeability were replaced with measured properties, and
simulations were repeated and re-assessed (Figure 3C and
Table 3 column 5).

11. Finally, for completeness, predictions of oral PK
parameters based on measured inputs for absorption
and disposition were evaluated.

Calculation of PK Parameters. The GastroPlus software
reports PBPK-based estimates of volume and clearance for each
simulation using internal methods. However, to avoid bias, we
estimated the parameters from both simulated and observed
profiles using the same noncompartmental analysis (NCA)
method based on mean observed plasma concentration versus
time profiles and based on the simulated concentrations at the
same time points as for the measured data. The PKPlus module
in GastroPlus was used for the NCA and for fitting of
compartmental models (step 8 above). For model fitting, an
objective function weighting of 1/(y + y_hat)2 was applied, and
the best model was selected based on the Akaike information
criterion. Model parameters are provided in Table S2.
Assessment of Predictions. Fold errors for the predicted

PK parameters were estimated as below:

=fold error
predicted
observed

lmono
|}o~o

Bias was assessed using the average fold error (AFE; AFE < 1
and AFE > 1 indicate underprediction and overprediction bias,
respectively):

= =average fold error 10 nlog(
predicted
observed )/i

n
1

Precision was assessed using the average absolute fold error
(AAFE; value of 1 indicates perfect predictions):

= =average absolute fold error 10 nabs(log(
predicted
observed ))/i

n
1

For bioavailability, the average prediction error (APE) and
average absolute prediction error (AAPE) were used, where
average refers to the arithmetic mean and where

= {
}

prediction error observed bioavailability

predicted bioavailability

ML-Predicted PBPKModel Inputs. AGastroPlus database
was created by importing chemical structures contained in a
structure-data file (*.SDF). The default ML models were taken
to generate properties by accepting the “Use Predicted” option
and choosing a PBPK model for disposition. For the PBPK
model, the Population Estimates for Age-Related Physiology
(PEAR physiology) for a 30 year-old American male [86 kg,
body mass index (BMI) = 27.5] was used for all compounds
irrespective of the actual clinical population. This was
considered most appropriate to represent the situation where
a human PK prediction is made prior to the detailed knowledge
of the demographics of the actual population in the first-in-
human (FIH) study.
The ADMET Predictor-predicted properties used models as

described below. Rb/p values were predicted using the RBP
model (trained on data for 204 molecules), fu,p values were
predicted with the hum_fup% model (trained on data for 1986
molecules), and intrinsic clearance used the CYP_HLM_CLint
model which predicts an unbound intrinsic clearance and was
trained on measured data for apparent CLint corrected for
binding using the S + fumic model. The octanol−water partition
coefficient was predicted with the S + log P model trained on
12,820 experimental values. Aqueous solubility predictions used
the S + Sw model for native solubility trained on data for 3596
compounds, while biorelevant solubility in FaSSIF and FeSSIF
used the S + FaSSIF and S + FeSSIF models (trained with data
for 160 compounds). Ionization constants came from the S +
pKa model which was trained on data for over 25,000 measured
pKa values. Finally, effective permeability in human jejunum was
predicted with the S + Peff model.
Drug distribution wasmodeled using perfusion-limited tissues

with tissue partition coefficients predicted with the Lukacova
(Rodgers single) option.33,34 For the calculation of the partition
coefficients which describe distribution into tissues, the “Use
Adjusted” option was selected for the plasma unbound fraction,

Table 2. Predicted and Observed PK Parameters for IV Dosing

MLa in vitrob MLa in vitrob

record number observed CL (L/h) predicted CL (L/h) predicted CL (L/h) observed Vss (L) predicted Vss (L) predicted Vss (L)

1 16.6 8.9 17.6 35 393 155
2 8.0 6.3 1.9 1150 718 646
3 2.3 0.5 4.3 511 782 202
4 10.5 12.4 19.7 56 66 102
5 18.1 9.5 24.6 225 315 132
6 3.8 5.4 20.1 50 79 53
7 0.73 4.91 17.3 308 547 44
8 10 18.4 22.1 203 444 573
9 14.4 0.7 18.2 3360 1290 1190
10 31.8 5.0 93.8 469 808 748
11 0.53 7.09 17.5 65 696 43
12 2.65 13.9 7.2 107 92 168

AFE 0.95 2.63 1.72 0.90
AAFE 3.55 3.35 2.24 2.21
within 2-fold 6 5 8 7

aAll input parameters generated with ADMET Predictor. bML inputs replaced with measured fup, Rb/p, and hepatocyte CLint.
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fup_adj. This accounts for drug partitioning into plasma lipids
based on the log P of the molecule and the lipid composition of
human plasma assuming that fu,p measures only drug binding to
plasma proteins.35

=
+ +( )

fup
1

10 1
V

V
Padj log 1 fup

fup
lipid

water

where Vlipid is the volume fraction of total neutral lipid and
phospholipid in plasma (taken as 0.00575) and Vwater is the
volume fraction of water in plasma (taken as 0.945).
Biotransformation analysis showed that our compounds

predominantly undergo oxidative metabolism (data not

shown). Therefore, we considered that ML models trained on
in vitro data from either human liver microsomes (HLMs) or
human hepatocytes (HHEP) could be appropriate. According
to the validation statistics provided in the ADMET Predictor
manual, the HLM and HHEPmodels have similar performance.
We evaluated both models and found comparable results (see
Figure S7). For simplicity, we only used the HLM model in this
work.
The CYP_HLM_CLint model predicts CLint in μL/min/mg

protein and was built with in vitro intrinsic clearances measured
inHLMs for a set of 1590molecules. This model is labeled as the
“total liver microsome” model in the GastroPlus import options.
The CLint value was converted to in vivo based on a microsomal
protein content of 38 mg protein/g tissue and a liver weight of
1827 g. Thus, intrinsic unbound clearance in L/h is given by

= × ×
unbound in vivo CL (L/h)

CL 38 1827
(10 /60)int

int
6

The in vivo hepatic plasma clearance was then predicted with
the well-stirred liver model based on the predicted unbound
intrinsic clearance, the predicted fu,p, and the predicted B/P
with a hepatic blood flow of 94 L/h taken from the default
GastroPlus physiology.
For the simulation of oral absorption based on ML inputs,

default predicted properties were taken for all model parameters.
For solubility, thermodynamic solubility in water and the
corresponding pH were combined with predicted ionization
constants and solubility factors to estimate a solubility versus pH
profile which was then combined with predicted biorelevant
solubilities (FaSSIF and FeSSIF) to estimate a bile salt
solubilization ratio (BSSR) (Table S3). The default precip-
itation time of 900 s was retained for all molecules, but the
default particle diameter of 50 μmwas reduced to 10 μmasmore
realistic for the typical micronized formulation used in phase 1
clinical studies.
ADMET Predictor also uses the ionization, permeability, and

molecular weight of molecules to predict the likely clearance
pathways according to the extended clearance classification
system (ECCS),36 and this was also assessed in this study.
Measured In Vitro Properties. The fu,p was measured in

human plasma, and Rb/p was measured in freshly drawn blood.
Intrinsic metabolic clearance was determined based on the loss
of the parent compound measured after incubation of the test
compound with human hepatocytes. The in vitro assays are
described more fully in Kratochwil et al.24 Permeability was
measured in Caco2 cells (pH 6.5 on the apical to pH 7.4 on the
basolateral side) and converted to human jejunal permeability
based on a correlation for reference drugs as described in Parrott
and Lave.37 Solubility was measured in aqueous buffer and also
in biorelevant media.37

For prediction of CL, the apparent intrinsic clearance
measured in hepatocytes (in vitro CLint μL/min/106 cells)
was scaled to account for liver weight (1827 g) and
hepatocellularity (120 × 106 hepatocytes per gram of liver) as
shown below:

=
* *

*

unbound in vivo CL (L/h)

in vitro CL hepatocellularity LW
fu

int

int

incubation (10 /60)6

The suspension hepatocyte assay is performed with a medium
containing protein (10% fetal calf serum), and our default

Figure 3. Predicted and observed %F. (A) All PBPK model inputs
predicted with ML; (B) observed data after intravenous dosing used to
model postabsorptive processes, permeability, and solubility predicted
withML; and (C) observed data after intravenous dosing used tomodel
postabsorptive processes, measured solubility, and permeability used to
predict absorption. Green and red dotted lines represent lines of unity
and 2-fold prediction error, respectively.
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scaling approach, based on previous experience with our in-
house assay, is to assume that the fraction unbound in the
incubation (fu,inc) is the same as fu,p. However, an approach
where the fu,inc was calculated assuming a dilution effect due to
only 10% FCS in the medium was also explored.38 Scaling to in
vivo clearance then used the well-stirred model as described for
the ML-predicted CLint. Extrahepatic metabolic clearance and
transporter-mediated clearance were assumed negligible for all
the simulations performed in this study. This was necessary since
neither relevant ML models nor in vitro data were available for
this data set.

■ RESULTS
Observed Properties of Test Compounds. Basic

physicochemical and PK properties of test compounds are
shown in Table 1. A majority of compounds were basic (70%
with basic pKa >3), with compounds 5 and 10 showing strong
basic pKa values > 7. Compounds 4, 6, and 7 were
predominantly neutral, compound 1 was acidic, and compound
11 was zwitterionic. All compounds are highly lipophilic, with
predicted log P values ranging from 2.3 to 6.7 and an average of
4.2. Measured binding to plasma proteins is high with half of the
compounds exhibiting a fu,p < 1%. Observed CL values are low,
with an average CL of only 10 L/h (a geometric mean of 5.6 L/
h) and values ranging from extremely low (<1 L/h) to moderate
(32 L/h). Observed Vss volumes are also high with an average of
550 L (a geometric mean of 213 L), and two compounds (2 and
9) exhibit extremely large volumes beyond 1000 L. Permeability
is moderate to high for all compounds (an average Peff of 2.83
cm/s × 10−4), but measured aqueous solubilities are low and
only two compounds show a dose number < 1 (where the dose
number is the ratio of the dose to the amount that can be
dissolved in 250mL at the lowest aqueous solubility between pH
1 and pH 8). Despite low aqueous solubilities, the observed oral
bioavailabilities are reasonably high with an average of 57% and a
range from 11 to 134%.
ADMET Predictor-predicted metabolism to be the major

clearance pathway for most of the molecules (Table S4).
According to the predicted ECCS categories, 67% of
compounds were class 2 and likely to be cleared via metabolism,
two compounds (3 and 9) were class 4, where renal clearance is

likely to be important, and the remaining two compounds were
in classes 1B and 3B, where active uptake is predicted to play a
role in hepatic clearance. In fact, the observed clinical data
showed only minor renal elimination (<2%) for all compounds
except for compounds 4 and 12, which showed, respectively,
fractions of dose in the urine of 16 and 11%.
Comparison of ML-Predicted and Experimental In-

puts. Due to the high lipophilicity of test compounds,
measurements of log D were only possible for a subset with
lower values (log D ≤ 4). However, the estimates of log P based
on measurement showed good alignment with the ML-
predicted values (Table S5). Similarly, the measured ionization
constants were comparable to ML predictions (Table S6).
Predicted fu,p values showed marked overprediction bias

compared to measurements (an AFE of 5.89; an AAFE of 9.02),
especially when the measured fu,p was less than 1% (Table S7,
Figure S1). ADMET Predictor estimated fu,p > 1% for all
molecules, whereas 6 out of 12 test compounds showed
measured fu,p < 1%. Adjustment for partitioning into plasma
lipids significantly improved predictions of fu,p, reducing the
overprediction bias and improving the overall precision (an AFE
of 1.32; an AAFE of 4.57).
The Rb/p was well predicted, with minimal underprediction

bias and good precision (an AFE of 0.92; an AAFE of 1.22)
(Table S8). An exception to this trend was compound 10, which
was underpredicted by 3.5-fold (measured 2.6 vs predicted
0.76).
Permeability was well predicted (Table S3). The AFE was 1.2,

and the largest fold error was a 3.9-fold overprediction for
compound 3. Biorelevant solubilities tended to be overpredicted
with the largest fold errors of 40 and 47 in the FeSSIF
predictions for compounds 3 and 11, respectively. The AFE
across all biorelevant solubility predictions was 2 with FeSSIF
tending toward higher overprediction (an AFE of 3) than
FaSSIF (an AFE of 1.2).
Predictions of PK after an IV Dose. Predicted human CL

andVss parameters are compared to the observed values in Table
2 and Figure 2.
Prediction of CL based on ML inputs showed a slight

underprediction bias with an AFE of 0.95, but precision was
poor with an AAFE of 3.55 and only half of the predictions

Table 3. Predicted and Observed %F for Oral Dosing

predicted %F

compound
observed
%F

ML disposition
inputs and ML
absorption inputs

measured input data for disposition
inputs and measured data for
absorption inputs

ML absorption inputs and
compartmental disposition model
fitted to observed IV data

measured absorption inputs and
compartmental dispositionmodel fitted
to observed IV data

1 53 36 38 65 37
2 53 91 97 86 87
3 30 99 64 98 67
4 102 79 76 88 85
5 n.a.
6 72 92 60 93 94
7 22 92 69 99 98
8 134 73 67 85 85
9 11 99 51 80 54
10 34 53 52 89 56
11 13 80 4 89 5
12 100 81 89 96 96

APE 23% 4% 31% 8%
AAPE 45% 30% 44% 34%
within
20%

4 5 3 4
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within 2-fold of observations (Figure 2A). Considering CL
categories of low (<30 L/h), medium (30−60 L/h), and high
(>60 L/h), 11 out of 12 test compounds were correctly classified
as low CL with only compound 10 misclassified as low when
observed CL was moderate.
Use of measured in vitro data as model inputs (fu,p, Rb/p, and

hepatocyte CLint), with an assumption of fu,inc = fu,p, only
slightly improved precision (an AAFE of 3.35) and introduced
an overprediction bias (an AFE of 2.63) (Figure 2B). Only five
of the predictions were within 2-fold of observed, while 11
molecules were correctly classified as low CL. Again, compound
10 was incorrectly classified being predicted as high instead of
moderate CL.
In vitro CLint was also scaled using a calculated fu,inc,

assuming a dilution of plasma to 10% of protein concentration.
This “plasma dilution” scaling method slightly improved overall
precision (an AAFE of 3.04) but introduced an underprediction
bias (an AFE of 0.59), with five predictions within 2-fold from
observations (Figure S2 and Table S9). However, considering a
subset of six compounds with fu,p < 1%, the dilution method
gave overall better predictions especially for compounds 7 and
11, which had fold errors reduced to 3- and 6-fold, respectively,
compared to >20-fold errors when assuming fu,inc = fu,p.
Using ML inputs and adjusting the fu,p for plasma lipid

partitioning, the human Vss was more accurately predicted than
CL with an AFE of 1.72, an AAFE of 2.24, and eight of predicted
values within 2-fold of observed (Figure 1C). Substituting Rb/p
and fu,p with measured values reduced the overprediction bias
(an AFE of 0.90), while overall precision remained similar (an
AAFE of 2.21) and seven of the predicted values within 2-fold.
Omitting the adjustment of measured fu,p for lipid partitioning
gave a slightly worse predictions (an AFE of 1.41, an AAFE of
2.58, and five within 2-fold) (Table S10).
Prediction of plasma concentrations was also evaluated by

comparing the measured concentrations to simulated values for
the same time points. The PBPK-simulated profiles based on
ML inputs showed an AFE of 0.63, AAFE was 3.30, and 54% of
simulated concentrations were within 2-fold of observed (Figure
S3).
Predictions of PK after a PO Dose.Using ML inputs only,

human %F was poorly predicted with APE and AAPE values of
23 and 45%, respectively (Figure 3A, Table 3).
Similarly, predicted concentration−time profiles showed

AAFE values of 3.89 and 2.68 for AUC and Cmax, respectively
(Tables S11 and S12; Figure S4).
Replacing ML inputs with observed IV PK data resulted in

comparable predictions of %F (Figure 3B, Table 3; an APE of
31%, an AAPE of 44%), but predictions of AUC and Cmax were
modestly improved, with AAFE values of 2.16 and 2.60,
respectively (Tables S11 and S12; Figure S5). Further
replacements of solubility and permeability with measured
data improved predictions of oral %F, with reduced bias (an APE
of 8%) and better precision (an AAPE of 34%) (Figure 3C;
Table 3). Consequently, predictions of AUC and Cmax were also
improved, with AAFE values of 1.89 and 1.99, respectively
(Tables S11 and S12; Figure S6).
For completeness, simulations using in vitro data for both

absorption and disposition were performed (Tables 3, S11, and
S12). Predictions of oral AUC showed a high AAFE value of 4.4
(largely due to the low prediction accuracy of systemic clearance
from in vitro data where AAFE was 3.35, Table 2). However,
Cmax was comparably well predicted with an AAFE of 2.4 and 7
compounds predicted within 2-fold of observed Cmax.

Lastly, to explore possible explanations for significant
mismatches between simulated and observed absorption
profiles, a model parameter sensitivity analysis was applied for
each compound. Permeability was a sensitive parameter for two
compounds (4 and 12) and improved predictions of Cmax. For
compound 12, a reduction in permeability from 2.5 to 0.5 cm/s
× 10−4 was needed, while for compound 4, an increase from 0.6
to 4.6 cm/s × 10−4 improved the match to observed data. For
compound 2, there was low sensitivity to solubility, dissolution
rate (or particle size), and permeability, but an increased first
pass extraction by 30% was found to bring the simulations better
in line with observed data. For compound 8, the F of 134% based
on NCA reflected nonlinearity in the PK, which could not be
captured in the current models. The remaining seven
compounds all showed sensitivity to solubility and/or
dissolution rate, which could lead to the underprediction
(compounds 1 and 11) or overprediction (compounds 3, 6, 7, 9,
and 10) of %F. However, other factors may play a role; for
example, compounds 6 and 9 are weak bases where gastric
solubility and precipitation could be important, while for
compounds 3 and 7, the model predicted a large amount of
colonic absorption, resulting in over estimation of plasma
exposures.

■ DISCUSSION
As shown in Figure 1, lipophilicity influences ADME in complex
overlapping ways, and PBPK models can be a valuable tool to
explore how changes propagate to overall PK.39

As added lipophilicity often increases the pharmacodynamic
potency, many drug design teams aim for the highest log P
allowed by good PK.28 The idea that the log P should be finely
balanced between the potency and PK is partially captured by
the lipophilic ligand efficiency (LLE = pIC50 − log P), a simple
metric that is often used in drug discovery.31,40 Changes in logD
influence many drug properties simultaneously, including
solubility, permeability, metabolic stability, and binding to
tissues and plasma proteins, and all of these properties influence
drug PK (Figure 1). Therefore, instead of simple metrics like
LLE, integrative methods are preferred to predict these complex
outcomes and facilitate drug design. Prediction of human PK
can be achieved by integrating drug properties into PBPK
models.2 However, when log D is high, measurement of these
influential properties is challenging and predictions become
more uncertain. In this study, we have explored, for a set of
lipophilic compounds, prediction of human PK using PBPK
models based on early measured ADME data or purely ML-
predicted properties. The overall PK properties of the 12
compounds in the current study may be compared to the
properties of 1352 drugs collected by Lombardo et al.22

Clearances in the current study are all below 32 L/h, and the
mean is only 10 L/h, while the mean of the Lombardo data set
was 51 L/h. Conversely, mean Vss for this data set is very high at
550 L compared to 266 L for Lombardo’s data set. These
observed PK properties are determined by intrinsic physico-
chemical and biochemical properties of the molecules. The
median molecular weight and log P for this data set are 446 and
4.2, respectively, which are noticeably higher than the median
values of 371 and 2.0 for Lombardo’s data set. Further, half of
our compounds have fu,p < 1%, which is the case for only 12% of
Lombardo’s compounds. Therefore, these compounds repre-
sent an extremely lipophilic chemical space for drug-like
molecules which can be particularly challenging experimentally
and for IVIVE. Protein binding is a fundamental PK property
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which influences both clearance and distribution as well as
pharmacodynamics, drug-interaction potential, and toxicity.
Compounds with a fu,p < 1% are associated with measurement
uncertainty, and although very low free fractions can be
measured,38 regulatory agencies still refrain from recognizing
values less than 1%.41 When analyzing measured protein binding
for drug discovery molecules, Gleeson reported that although
higher plasma protein binding is associated with acidic
compounds, binding increases with log P for all ionization
classes.42 The six compounds which showed extremely low fu,p
in this study are not acids but highly lipophilic zwitterionic or
basic molecules (log P ranging from 3.9 to 6.7). This places them
outside the range covered by the training sets used for most in
silico models and probably explains the poor predictions of fu,p
seen in this study when using the artificial neural network model
in ADMET Predictor since that model was trained on data with
very few fu,p values <1% (ADMETPredictor reference manual).
However, the ML predictions of fu,p were greatly improved by
accounting for drug partitioning into plasma lipids based on the
log P, and this eventually resulted in quite good prediction of Vss
based on only ML-predicted inputs. No mechanistic inter-
pretation of the improvement in ML predictions of fu,p is
implied. Rather, improvement in the ML model for fu,p should
be possible via expansion of the training set used to build the
model, especially to include more compounds with high log P
values. The correction of fu,p used in this study is designed as a
method to improve the prediction of tissue distribution by
considering partitioning into plasma lipids. Our previous
investigations35 of Vss prediction in rat showed that the Rodgers
and Rowland33,34 method tends to overpredict Vss for highly
lipophilic compounds, and we hypothesize that this could be due
to the inability of in vitro experiments to correctly capture
binding of drug to plasma lipids in vivo. The equation presented
in this article therefore corrects the experimental fu,p for binding
to plasma lipids assuming that the experimental fu,p is an
accurate estimate of drug binding to plasma proteins and that log
P can be used to predict drug partitioning to plasma lipids. This
correction did give a slight improvement in the human Vss which
supports the previous finding for the rat. However, further
investigation of this mechanism is necessary.
Vss prediction was also reasonable when measured fu,p was

used as an input. Plasma includes only a low volume fraction of
lipids (<1%);43 however, when a molecule has a very high log P,
the partitioning into lipids can become significant and prediction
of drug distribution can be improved when this is accounted for
by adjustment of fu,p as seen in this study and in previous
reports.
Regardless of whether ML or in vitro inputs were used,

predictions of human CL were quantitatively poor with AAFE
values of 3.55 and 3.35, respectively, and limited correlation
between predictions and observations (Figure 2A,B). Consid-
ering first the ML model, the ADMET Predictor HLM_CLint
model for hepatic metabolism was based on in vitro intrinsic
clearances measured in HLMs for a set of 1590 molecules, and
the root mean squared error for the model was 0.43 log units.
The 12 molecules in this data set are believed to be mainly
cleared via oxidative metabolism, and so, underprediction due to
neglecting nonoxidative or extrahepatic routes may be relatively
minor. However, prediction of systemic clearance from
unbound intrinsic clearance requires correction for the free
fraction, both in vitro and in vivo, and this can be expected to
introduce a significant additional error for these very highly
bound drugs. Furthermore, the set of molecules used to train the

HLM_CLint model may not have included many molecules
with such high log P. Other approaches have been described to
build ML models to predict in vivo systemic clearance directly;
for example, Berellini reported on a linear partial least-squares
model using physicochemical descriptors and structural frag-
ments and trained on a data set of systemic clearances for 754
compounds.44 Their model validation showed a geometric mean
fold error (GMFE) of 2.1 with 59% of compounds predicted
within 2-fold. More recently, Wang et al.20 reported even better
predictions with a RMSE of 0.103 for CL predictions based on a
random forest ML method trained on Lombardo’s data set of
1352 drugs.
Surprisingly, the use of measured CLint, fu,p, and Rb/p data

failed to significantly improve the predictions of CL for this data
set (Figure 2B). This may be related to several factors. For
example, the suspension hepatocyte assay used is known to be
limited in precision when determining CLint values less than 3
μL/min/106 cells.8 This applies for 9 out of 12 compounds in
this study, and it is likely that use of a more precise assay for low
CLint measurement would give better results, for example, a
long-term hepatocyte culture.10,24 However, it is acknowledged
that at the drug discovery stage, the higher cost of such assays
limits their use to particularly interesting compounds, and the
suspension assay is a more realistic option for higher
throughput.10 Another contributing factor to the poor IVIVE
for clearance is a high amount of nonspecific binding due to high
log P, which limits the accuracy of the determined unbound
CLint values. A recent cross-industry analysis supported by the
International Consortium for Innovation and Quality in
Pharmaceutical Development showed how poor prediction of
clearance can be the result of inaccurate estimation of fu,inc for
lipophilic compounds with log P >345 and also showed that use
of ML models developed using proprietary data sets can better
predict fu,inc for compounds with high lipophilicity. Although
the focus of this work is on prediction prior to the first clinical
dosing, once clinical development has started an early study arm
where an oral dose is given simultaneously with an intravenous
microdose (as done for 8 of 12 compounds here) can be valuable
when the human clearance is highly uncertain as it can rapidly
elucidate the causes of low exposures (e.g., to guide formulation
work for low solubility drugs). Likewise, availability of actual
demographic data for the studied populations can be used to
replace generic physiological model parameters, although this is
not likely to be a significant source of error for this study since
the study demographics were close to the assumed generic
settings of a 30 year-old male with a body weight of 86 kg and a
BMI of 27.5 (see Table S1).
Regarding renal clearance, this study assumed that these

lipophilic molecules with low free fraction in plasma would show
negligible renal excretion, and this was largely confirmed by the
clinical data, although the two least lipophilic molecules, 4 and
12, did show minor renal clearance (Table S4).
Partitioning into blood cells is important to account for in

physiological model-based clearance prediction46 and also in
prediction of Vss for moderate-to-strong bases where it is used to
estimate affinity to tissue acidic phospholipids47 and becomes, in
addition to fu,p, a critical parameter for accurateVss prediction.

39

In this study, only compound 10 showed a poorly predicted Rb/
p value, with a prediction of 0.76 compared to a measurement of
2.6. As compound 10 is a strong base, this change in Rb/p results
in close to 2-fold changes in both clearance and Vss, showing the
potential importance of accurate prediction of this model input.
The ADMET Predictor model was built based on human data
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for 204 compounds. Only few predictive models for Rb/p have
been published.48

In this study, using only ML predictions as input parameters,
Vss predictions were significantly more accurate than CL
predictions (AAFE of 2.24 and 3.55, respectively). This may
be due to the fact that for lipophilic compounds with good
membrane permeability, Vss is a function of differential
partitioning between plasma and tissues and so is driven by
physicochemical properties and can be well captured by the
tissue composition equations implemented in PBPK models.39

This is further supported by the recent work of Nagar and
Korzekwa who have taken a detailed mechanistic structure
orientation-based approach to predict drug−membrane inter-
actions and membrane partitioning which can subsequently be
combined with plasma protein binding data to predict Vss.

49 The
notable exception to the accurate Vss predictions for this data set
was compound 1, where the Vss was approximately 9-fold
overpredicted. A sensitivity analysis showed that this prediction
is strongly affected by both the acidic pKa value and the log P.
Changing the pKa from 7.1 to 6.5 or changing log P from 4.7 to
4.1 brings the predicted Vss into agreement with the observed
value.
Considering the predictions of oral PK, if only ML inputs are

used, predictions of human %F (AAPE of 45%), AUC (AAFE of
3.89), and Cmax (2.68) are rather poor. Even when using the
observed disposition data (derived after IV dosing), predicted %
F based onML inputs for absorption was poorly predicted with a
large AAPE of 44%. Use of measured data for permeability and
solubility improved the %F predictions, but the remaining AAPE
of 34% confirms the difficulty to predict oral absorption for
poorly soluble compounds with sensitivity to multiple factors,
including pH dependency and the effect of biorelevant medium
composition.
Even if predictions of human PK for highly lipophilic

compounds are challenging, our results show that early insights
are possible with limited experimental data or, importantly, only
with ML methods. The integration of ML predictions within
PBPK models also enables human PK predictions at the drug
design stage, even before the compounds are synthesized. Given
the availability of high-throughput PBPK approaches with
reduced computational requirements, this approach is now
feasible.18 From this perspective, if applied to libraries of virtual
compounds, observed AAFE values of 2- to 4-fold (for Vss and
CL, respectively) may help with design prioritization. The
feasibility of application of high-throughput PBPK for virtual
libraries was demonstrated in our recent work. Similarly, the ML
predictions of oral PK for %F (an AAPE of 45%), AUC (an
AAFE of 3.89), and Cmax (an AAFE of 2.68), while clearly
insufficiently accurate for later stages, may help teams to make
difficult decisions during an early stage when experimental data
are missing. Despite existing limitations, compared to simple
efficiency metrics (e.g., LLE) and empirical guidelines (e.g.,
Lipinski’s rule of 5), the approach of combining ML predictions
within PBPK models may offer improvements in design of
lipophilic compounds. Once the compounds are synthesized,
our results indicate that accurate measurements of solubility,
CLint, and fu,p are the key for improved PBPK model prediction
accuracy. Taken together, authors recommend a twofold
approach toward the future of early human PK predictions for
lipophilic compounds: (1) at the drug design stage, we should
invest in ML models to improve the prediction accuracy and
expand applicability domains and (2) after compound synthesis,
we should invest in quality in vitro assays, especially to

accurately capture solubility, metabolic clearance (especially if
<3 μL/min/106 cells), and nonspecific binding to plasma
proteins (fu,p) and incubation matrices (fu,inc).

■ CONCLUSIONS
This evaluation of prediction of human PK for 12 compounds is
too limited to draw strong conclusions. However, for highly
lipophilic molecules, this study illustrates the limitations related
to the measurement of in vivo relevant unbound clearance and
solubility at the early discovery stage. Further evaluation of this
approach with more diverse chemical types is warranted.
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