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Frontiers of bio-based and biodegradable polymers are
constantly expanding in a view to achieve sustainability.
Hence, designing sustainable bioplastics made of either bio-
based or biodegradable polymers opens up opportunities to
overcome resource depletion and plastic pollution. This review
presents a broad perspective on state-of-the-art technologies
in bioplastics manufacturing along with the challenges under-
lying their production, application and post-consumer waste
management. Recent scientific advances are catalysing the
sustainable design of bioplastics to overcome the present
challenges of plastic waste and emerging end-of-life options
are contributing to circular economy. As research insights into
developing sustainable bioplastics are rapidly evolving, their
production and waste management approaches are not limited
to those discussed in this review.
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Introduction and market growth
The 21st century is thriving with tremendous economic
growth but at the same time facing an irrecoverable
ecological damage. Plastic pollution is recently being
highlighted as global crisis at every stage right from the
production of plastics to their disposal and incineration
[1]. Bioplastics constituting both naturally and chemically
derived materials from renewable or oil-based resources
are being designed to feature minimal carbon footprint,
high recycling value and complete biodegradability/

compostability [2,3]. In order to ascertain no competition
with food and agricultural resources, recent advancements
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are emerging to develop next-generation bioplastics
derived from renewable waste streams, microbial/micro-
algal cells and biomass which eventually fosters carbon
neutral infrastructure for bioplastics production and
management [4,5]. Moreover, sustainable production and
recycling mechanisms for bioplastics are considered to
have huge compliance with the policies/actions set by
United Nation’s sustainability development goals (UN
SDGs) and European circular economy strategy [6].

The global bioplastics production capacities are difficult

to estimate and are usually based on forecast because of
continuously emerging range of bio-based and biode-
gradable polymers and rising interests on investing in
bioplastics sector. Recent report published by Nova
Institute has predicted that global bioplastics produc-
tion capacity is growing at a considerable pace from
around 2.11 million tonnes in 2018 to 2.62 million
tonnes in 2023 [7]. Europe ranks top in the research and
development of bioplastics and stands next to Asia as
major hub for bioplastics production and consumption
[8]. With many innovative bioplastics entering the

market segments for diversified applications, industries
are interested in expanding the production capacity.
Acute relevance to sustainability and circular economy
has been indeed influencing the bioplastics industry to
achieve substantial growth and technological maturity
with multiple production routes.
Progress and trends in commercial
bioplastics
Naturally occurring polymers like cellulose derivatives,
thermoplastic starch (TPS) and their blends
stand highest in terms of production capacity as these
materials are replacing plastics particularly in flexible film
packaging sector [9,10].Recentbioplasticsmarketupdate
shows that polylactic acid (PLA) receives greater atten-
tion from both academia and industry due to its techno-

logical advances in productivity and functionality [11,12].
PLA is known for its versatility featuring excellent barrier
properties thus gaining value to replace polystyrene (PS)
and polypropylene (PP) in packaging and other chal-
lenging applications [13]. Next to PLA, polyhydroxy
alkanoates (PHA) receive interest as evidenced by greater
number of international patents [14]. However, in terms
of global production capacity, PHA stands next to poly(-
butylene adipate-co-terephthalate) (PBAT) and poly-
butylene succinate (PBS). As per recent market report,
current global production of PHA is about 25,320 tonnes,
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which accounts to 1.2% as against PBATand PBS holding
13.4% and 4.3%, respectively [15]. Polycaprolactone
(PCL) and PBAT are fossil-based polymers but tend to
biodegrade, signifying that biodegradability is not always
dependent on the source of origin or the polymer building
block. Schematic representation shown in Figure 1 clearly
demarcates various technological approaches specific to
different classes of bioplastics.

Majorly used commodity polymers like polyethylene
terephthalate, polyamide and polypropylene have also
been manufactured from bio monomers-derived glucose
fermentation or lignin fermentation, which facilitate the
resurgence of Bio-PET, Bio-PA and Bio-PP respectively
[16]. Growing interest in novel bioplastics constituting
two or more existing biodegradable polymers would
eventually result in second-generation bioplastics, thus
offering advantage of developing scalable counterparts
to synthetic plastics [17]. Hence, the goal would be to

design novel composites comprising only of bio-based
building blocks having specific desired functionalities
suitable for applications and at the same time
completely biodegradable and recyclable building
blocks having specific desired functionalities suitable for
technological applications [18]. For example, in a recent
work, synergic blends of PLA and PCL were highlighted
Figure 1

Schematic representation of technological approaches in producing commerc
based resources).
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as completely biodegradable (in domestic composting
conditions) alternatives to conventional, petrochemical-
based plastics [19]. Emerging bio-based polymers like
poly(ethylene 2,5-furandicarboxylate) (PEF)/poly(tri-
methylene terephthalate) (PTT) and polypropylene
carbonate (PPC) produced from bio-based furan
monomers and alcohols/epoxides respectively are char-
acterised by excellent thermal and barrier properties

comparable to their petroleum analogues [20]. For
instance, blending PEF with PLA or PHA would ulti-
mately contribute to superior functional and biode-
gradable properties enabling practical application in
packaging applications [21]. The trade-off between
biodegradability and functionality brings huge research
scope on blending and compatibilisation of various bio-
based polymers to push their performance efficiency
and versatility [22,23]. Table 1 shows the widely known
bio-based and biodegradable polymers and their
respective starting materials and feasible end-of-life

options [18,24].
State-of-the-art technologies for bioplastics
innovations and production
The current bioplastic sustainable production model

relies on design and development of novel valorisation
ial bioplastics (shaded in blue: biodegradable polymers derived from oil-
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Table 1

Commercial bioplastics including both biodegradable and non-biodegradable polymers, their production source, capacity and end-of-
life options (adapted and modified from Ref. [18]).

Biodegradable polymers

Polymer name Source/Feedstock Production
capacity (Kt/Year)

Trademark/Company Sustainable end-of-life
options

TPS, Cellulose,
Cellulose acetate,
Starch blends

Biomass, agro-residues,
lignocellulosic derivatives

384 Mater-Bi/Novamont, Agrana starke,
NaturePlast, Indochine Bio
Plastiques

HC, IC, AD

PLA and PLA blends Lactic acid from dairy whey,
corn starch or organic residues

225 Ingeo/NatureWorks, Luminy®/
Total Corbion, Lacty/Shimadzu
Cor. Vyloecol/Toyobo, Danimer
Scientific

IC, MR, CR

PHA, PHB, PHO Volatile fatty acids, glucose/
glycerol from fermentation of
municipal solid waste or any
carbon feedstocks

30 Minerv-PHATM/Bio-On,
PHBH™/Kaneka, TephaFlex®/
Tepha, Nodax™/Danimer
Scientific, AirCarbon®/Newlight
Technologies

HC, IC, AD, CR

PCL Chiral hydroxy acids, lactones – CAPA™/Perstorp (Ingevity) HC, IC, CR
PBS Succinic acid, 1,4-butanediol 97 GS PLA®/Mitsubishi

Chemical, Bionolle™
1000/Showa Denko
K.K., Skygreen®/SK
Chemicals, Succinity,
BioPBS™/PTT MCC
Biochem

CR, ED

PBAT and PBAT blends Terephthalic acid, adipic acid,
hydroxymethyl furfurals
(HMFs), butanediol

152 Ecoflex®/BASF,
Wango/Zhuhai Wango
Chemical Co.,
Ecoworld/JinHui
ZhaoLong, Eastar
Bio/Eastman,
Origo-Bi®/Novamont

IC, CR

Bio-based and non-biodegradable polymers
Bio-PE Bioethanol from sugarcane 200 Braskem MR
Bio-PET Furan dicarboxylic acid from

HMFs
560 PlantBottle™/Coca Cola MR, CR, ED

Bio-PTT 1,3-propanediol 45 DuPont Corterra™, Sorona®/Shell
Chemicals

MR, CR

Bio-PEF HMFs – Synvina/Total-Corbion ED
Bio-PP Isobutanol – Technoform, LanzaTech MR
Bio-PA Volatile fatty acids, HMFs – Evonik VESTAMID®

TERRA, Dupont, FKuR, BIOFED
MR, CR

Bio-polycarbonates Bioethanol/dialkyl carbonate/
epoxides and carbon-dioxide

– Asahi Kasei Corporation, Saudi
Aramco Converge®

CR

AD, Anaerobic Digestion; MR, Mechanical Recycling; CR, Chemical/Catalytic Recycling; ED, Enzymatic Depolymerisation; IC, Industrial
Composting; HC, Home Composting.
*Emerging options in bioplastics waste management with either limited or no evidence on technology commercialisation.
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protocols of renewable resources derived from urban,
agricultural and food wastes. Approaches to develop
monomers and biodegradable polymers from biomass

feedstock received great attention in chemical in-
dustries by leveraging on the innovative biocatalytic
transformation and synthetic chemistry [25,26]. Sus-
tainable bioplastic materials are currently under
development, and innovation relies either on devel-
oping completely new types of polymers or drop-in
substitutes derived from renewable resources. Ad-
vancements in industrial biotechnology offer various
chemo-enzymatic or bio-catalytic synthetic routes for
www.sciencedirect.com C
converting biomass or renewable feedstocks into high-
value building blocks or monomers [27]. Additionally,
engineering of consumer-grade bioplastics based on

monomers derived from waste residues represents a
sustainable production value chain, which accounts for
establishing circular bioeconomy. Growing global
demand for bio-based and biodegradable polymers
prompted investments in research to promote and
establish large-scale production of bioplastics. Bio-
based industries (BBI) consortium in partnership
with European Union (EU) is investing about 3.7
billion on large-scale flagship projects to encourage
urrent Opinion in Green and Sustainable Chemistry 2020, 21:75–81
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new technologies for production of bio-based mono-
mers and polymers from waste biomass/renewable
feedstocks [28]. As one of the specific impacts of BBI’s
programme is to replace at least 30% of fossil-based
raw materials with bio-based and biodegradable ones
by 2030, potential scope for bioplastics manufacturing
processes is foreseen in the coming decade [29].

Bioplastics production by utilising greenhouse gases
like carbon dioxide is one of the sustainable carbon
upcycling approaches, which is gaining huge attention
[30]. Recent report by Nova Institute has highlighted
the projected estimation of directly converting 70%
CO2 for bioplastics manufacturing [31]. Breakthrough
research in areas of selective copolymerisation process
has resulted in the commercial production of poly-
carbonates constituting about 30e50 wt.% of waste
CO2 [32]. CO2 upcycling efforts are constantly
evolving for meeting the predicted demand of pro-

ducing 450 million tonnes plastic by 2050, which are
completely made from renewable carbon [31]. This
CO2 recycling approach holds benefit of being easily
retrofitted in the fossil fuel-based polymer-
manufacturing infrastructure thus exerting both eco-
nomic and environmental benefits. Indeed, lesser
dependence of agro-feedstocks, monomer extraction/
transformations and complex pre-treatments are
considered highly advantageous against bioresources-
derived polymers [33].
Sustainability and end-of-life options for
bioplastics
On a global trend, plastic production from fossil-based
resources and plastic waste incineration together ac-
counts to about 400 million tonnes of CO2 every year
[34]. Replacement of fossil-based plastics with bio-

based/biodegradable ones will certainly reduce carbon
footprint at the production level. However, assessing
their sustainability aspects in terms of end-of-life man-
agement is vital to exert bioplastics as an environmen-
tally friendly alternative. Not all bio-based polymers are
deemed biodegradable and in contrast, some of the
biodegradable polymers could also be produced from
fossil-based raw materials. Indeed, popularly known
bioplastics families like PHB, PCL and starch and their
blends are proven to be biodegraded in both managed
and specific unmanaged environments [19]; however,

failing to manage their disposal would result in uncon-
trolled biodegradation adding to existing plastic pollu-
tion [35]. Hence, it is of utmost importance to practice
specific end-of-life management considering the prop-
erties and processing conditions of each bioplastics
rather than a generic waste management plan. Life cycle
analysis (LCA) is an indispensable tool to gauge and
quantify the benefits or impacts of any bioplastics,
subjecting to the boundary conditions and assessment
considerations [36].
Current Opinion in Green and Sustainable Chemistry 2020, 21:75–81
Despite being resources-efficient and derived from
renewable bio-based feedstocks/residues, it is crucial to
look closely into environmental impacts of bioplastics
waste. Disposal of bioplastics waste in landfill certainly
contributes to management problems similar to those of
conventional plastic waste. Hence, advocating best end-
life management of post-consumer bioplastics waste is
needed to achieve lower carbon footprint [37]. Sus-

tainable management of bioplastics waste is highly
challenging as some of the bioplastics are designed to
only biodegrade in specific managed conditions thus
creating huge ill effects when disposed in non-ideal
environments like soil, fresh water and marine.
Indeed, scientists aim at developing bioplastics that
could achieve complete and quicker biodegradation in
any environment as per ASTM and ISO standards [38].
However, most of the reported biodegradability of
various biodegradable polymers was demonstrated at the
lab scale and it is essential to establish biodegradation of

the commercial bioplastics and their blends at the
appropriate industrial scale [39,40].

Recycling is considered the most preferred option to
manage bioplastic waste similar to conventional plastic
waste [41]. However, recycling can either be mechani-
cal, chemical/catalytic and organic depending on
whether the bioplastics are biodegradable and/or if the
considered polymeric material biodegrades only under
managed conditions. The distinct recycling options
shown in Figure 2 represent the state-of-the-art on

closed-loop management of post-consumer bioplastics
waste. Prime challenges in recycling of post-consumer
bioplastic waste are attributed to its heterogeneity, low
market volumes, diverse sources and high potential for
plastics waste contamination. These challenges indicate
a clear need for more efficient chemical and biochemical
processes to valorise the bioplastics waste into perpet-
ually reusable high-value end products. Implementing
combined recycling and recovering concepts including
extraction of high-value chemicals/monomers via
chemical recycling, solvent extraction [42] and cogen-
eration of biofuel and volatile fatty acids through

anaerobic digestion [43] would certainly create positive
impact towards a circular bioeconomy. Perhaps, some of
the management approaches would not directly recycle
back the bioplastics into their starting monomer. How-
ever, it is worthwhile to invest on valorisation of post-
consumer bioplastic waste and provide incentives for
recycling or energy recovery for contributing to circular
bioeconomy and sustainable management of bioplastics
waste [44].
Future outlook
Rationally designing the bioplastics to impart desired
functionality and recyclability [45,46] and utilising
unaccounted biomass as a valuable resource would
together establish a sustainable production value
www.sciencedirect.com
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Figure 2
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Schematic representation of recycling strategies for sustainable management of bioplastics and contribution towards SDGs.
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chain for bioplastics. Despite that some of the bio-
plastics production technologies are lacking the scal-
ability and productivity comparable to petroleum-

based routes, governmental regulations and consumer
pressure have been fostering the bioplastics industry
to adopt and implement sustainable production
routes. Circular bioeconomy is also gaining global
momentum, which in turn triggers a wide range of
stakeholders to leverage the synergistic potential of
bioplastics manufacturing and upscaling/recycling
strategies [47,48]. Innovations in fundamental rede-
signing of bioplastics with improved economics for
recycling will pave a way for the next generation of
sustainable bioplastics.
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