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ABSTRACT: Optimization of the ADME properties and pharmacokinetic (PK) profile of compounds is one of the critical activities
in any medicinal chemistry campaign to discover a future clinical candidate. Finding ways to expedite the process to address ADME/
PK shortcomings and reduce the number of compounds to synthesize is highly valuable. This article provides practical guidelines
and a case study on the use of ML ADME models to guide compound design in small molecule lead optimization. These guidelines
highlight that ML models cannot have an impact in a vacuum: they help advance a program when they have the trust of users, are
tuned to the needs of the program, and are integrated into decision-making processes in a way that complements and augments the
expertise of chemists.

Optimization of ADME properties is a key challenge
during the hit-to-lead and lead optimization phases of

small molecule drug discovery. Machine learning (ML) models
can be used to predict the outcomes of ADME-related assays
such as permeability, solubility, or liver microsomal stability.
They have been proposed as a tool to reduce the number of
design-make-test cycles and accelerate programs.1,2 However,
building and using ML ADME models effectively can be
challenging, particularly within the context of biotech
companies. Without large in-house data sets, there can be a
lack of sufficient data to build performant models, particularly
in the critical early stages of a program. And without the right
integration of ML models into design tools, there can be a
disconnect between model builders and end users, leading to
limited model use.

In this Viewpoint, we share four guidelines for using ML
ADME models effectively to help drive forward a drug
discovery program. In describing these guidelines, we draw
upon a case study of a collaboration between Nested
Therapeutics and Inductive Bio. In this collaboration, Nested
Therapeutics used Inductive Bio’s ADME models for lead
optimization in a best-in-class program. The models were
integrated into interactive tools that were used by the
medicinal chemistry team, enabling rapid iteration, enhanced
ideation informed by predicted data, and elevated design
quality. This allowed the team to efficiently resolve
permeability and metabolic stability issues, resulting in the
nomination of a development candidate with excellent cell
potency and cross-species PK.

■ GUIDELINE 1: REGULAR TIME-BASED AND
SERIES-LEVEL EVALUATION GIVES A REALISTIC
PICTURE OF MODEL PERFORMANCE AND BUILDS
TRUST TO USE ML MODELS AS A TOOL IN THE
DESIGN PROCESS

ML model evaluation is critical to earning user trust and
ensures a model is fit for use. A key step in model evaluation is
selecting the subset of compounds and measurements to
evaluate, which must be withheld from model training. We
follow two principles when choosing these evaluation sets: they
should be separated temporally from training data, and they
should be stratified by program and series.

Time-based splits simulate real usage, in which a model
trained on all data up to a certain date is used prospectively.
This is more rigorous than the commonly used techniques of
random or scaffold splitting, which can overestimate how well
a model will perform due to high similarity between training
and evaluation sets.3,4

Stratifying evaluation metrics by program and series is
important because ML models can vary in their performance
across projects and chemotypes, in a way that can be hard to
predict a priori.5 Proactively measuring performance at project
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and series levels informs project teams on where and for what
purpose models can be confidently used.

In our collaboration, we used these two principles to build
initial trust in the ML models and to continually validate the
models’ fitness for use. We performed a time-based split using
data from an existing program that had completed lead
optimization, evaluating performance across three distinct
chemical series, to confirm the general suitability of the ML
models to Nested’s data. We then performed an additional
time-based evaluation on existing early data from the program
of interest. From there, the ML models were used on an
ongoing basis, and performance was re-evaluated weekly using
a time-based split (see Guideline 3). We reported metrics for
the project as a whole and by series where appropriate
according to definitions crafted by the project team.

■ GUIDELINE 2: TRAINING ON A COMBINATION OF
“GLOBAL” CURATED DATA AND “LOCAL”
PROGRAM DATA LEADS TO THE BEST MODEL
PERFORMANCE

When developing ML ADME models for a project team, one
can create a local model trained solely on the program’s
measured data, as in traditional QSAR approaches.6 Alter-
natively, one might use a global model that has already been
built using large external data sets to predict a given
property.7,8 An approach that balances these extremes is to
train a model that combines nonproject global data with data
from the project itself. This can be done by simply including all
available data when training a model2,9,10 or by using other
more sophisticated fine-tuning approaches.5 Studies have
found that fine-tuned models trained with combined local
and global data perform better than those trained with local or
global data alone.5,9

The models used in our collaboration followed this best
practice of combining global and local data for training. The
models were initially developed using a curated global
proprietary data set and were then fine-tuned by adding
project data. Training was performed using a graph neural
network model architecture.11

To explore how the fine-tuned global model compared to
local-only or global-only alternatives, we analyzed performance
of the Inductive models against versions of the models trained
only on external curated data (global-only) and models trained
locally using a QSAR software tool implementing AutoML
(local-only).12 For each of human liver microsomal stability
(HLM), rat liver microsomal stability (RLM), Madin-Darby
Canine Kidney (MDCK) permeability (MDCK AB), and
MDCK efflux ratio (MDCK ER), we created a temporal
evaluation split by choosing the first 100 compounds measured
as local training data and the next 100 compounds as a test set.

As seen in Figure 1, the fine-tuned global modeling approach
generally performed best across the assays. It achieved the
lowest MAE (Mean Absolute Error) across all four properties,
and the highest Spearman rank correlation across all assays
except MDCK AB, where the global model correlation was
slightly higher.

In this program, the global training seemed most helpful in
predicting the MDCK measurements, and it was least helpful
in RLM. This cannot be easily explained in terms of similarity
of test compounds to those in the global training sets. For all
four assays, no more than 2% of the Nested compounds had
compounds in the global training set with a Tanimoto
similarity of >0.3 (calculated with Morgan fingerprints, radius
2). However, we observed a surprising divergence in measured
HLM and RLM intrinsic clearance in the Nested compounds,
with RLM compounds exhibiting a median 8 times higher
clearance. This difference between species was not anticipated
by the global model, which predicted roughly equal clearance
(leading to a high MAE for RLM), but was captured by the
fine-tuned global model. This emphasizes the value of
validating models on early program data, as well as that of
training on local data.

Figure 1. Performance of models trained on program data only (local only), nonprogram data only (global only), and on combined data (fine-
tuned global), on temporally split test sets for HLM, RLM, MDCK AB, and MDCK ER. Error bars represent 68% bootstrapped confidence
intervals. MAE (mean absolute error) units are in log 10 (mL/min/kg) for HLM and RLM, log 10 (μcm/s) for MDCK AB, and log 10 (ratio) for
ER.
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■ GUIDELINE 3: FREQUENT MODEL RETRAINING
ENABLES ML MODELS TO LEARN LOCAL SAR AS
A PROGRAM SHIFTS INTO NEW CHEMICAL SPACE
AND ENCOUNTERS ACTIVITY CLIFFS

Throughout lead optimization, new experimental data are
collected that may improve model performance. Tested
compounds may also move into new chemical space,
potentially worsening performance.13 These factors create an
incentive for frequent model retraining so the models can learn
the local SAR from the experimental data and maintain
accuracy.14,15

Monthly retraining has been shown to provide a boost in
performance compared to less frequent schedules across a
variety of ADME end points.16 Frequent retraining can be
particularly useful for rapidly adjusting to activity cliffs.14,17

Weekly retraining has been reported to be beneficial2 and
aligns well with the weekly cycle of design meetings common
in drug programs. While weekly retraining may sometimes
incorporate only a few new compounds, it also strengthens
user trust by ensuring that model predictions are always
informed by the most recent and relevant assay readouts.

Throughout the course of our collaboration, we applied
weekly retraining to keep our microsomal stability and
permeability models up to date. A retrospective analysis
confirms that frequent training aided performance for HLM
stability, the property for which data was collected most
consistently throughout the time course of the program. When
we split HLM measurements into periods of 1 month and
evaluated predictions from the model deployed at the
beginning of that month, we observed an average Spearman
R of 0.65. If we instead used the model deployed 1 month
previous, the Spearman R fell to 0.55. An additional month lag
dropped it further to 0.49.

We also observed the helpfulness of model retraining for
adjusting to activity cliffs. At one point, a change to a
substitution position in a ring was discovered to cause a
surprising several-fold jump in microsomal clearance. While
the model did not predict this jump in advance, retraining
weekly allowed it to rapidly adjust to the observed data and
begin making appropriate predictions for additional com-
pounds with the new motif.

Table 1. Key Compounds from the Case Study Campaign and Their Properties

compound # target engagement assay (nM) HLM T1/2 (min) RLM T1/2 (min) dog LM T1/2 (min) MDCK Papp (ER) projected human dose

1 752 83 37 2 13.8 (0.8)
2 100 82 44 22 3.6 (2.6)
3 263 82 32 13 4.7 (2.2)
4 137 65 65 57 8.1 (0.9) 4× higher than desired
5 124 83 72 60 7.4 (0.8) desired

Figure 2. A screenshot of the interactive design environment with ML ADME predictions, comparison to a reference compound, and highlights of
sites of likely metabolism.
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■ GUIDELINE 4: TO MAXIMIZE IMPACT ON THE
DESIGN PROCESS, ML MODELS SHOULD BE
INTERACTIVE, INTERPRETABLE, AND
INTEGRATED WITH OTHER TOOLS

The best ML ADME model will not have an impact unless it is
actively used.1 We have found that models have the best
chance of being used effectively if they are integrated,
interactive, and interpretable. Integrated models are available
within software tools that computational and medicinal
chemists are already using to guide decision-making. Interactive
models provide real-time predictions as a chemist ideates new
designs, rather than working only via bulk scoring or with a
long computation time. And finally, interpretable models
provide not only a predicted assay value but additional
relevant information such as atom-level visualizations indicat-
ing important regions of the molecule for a given property.
These three principles were brought together to make the
Nested−Inductive collaboration successful.

At the start of the collaboration, the program was in early
lead optimization with the goal of demonstrating in vivo target
engagement at a projected low human dose. Compound 1
(Table 1) showed moderate cellular activity, good perme-
ability, and HLM stability, yet in vitro/in vivo dog and rat
clearance needed improvement.

To address these goals, the computational team at Nested
vetted and deployed docking, strain energy prediction, and
atomistic simulations including free energy predictions.
Frequently retrained ML ADME models from Inductive were
integrated into the existing computational infrastructure via an
application programming interface (API). This allowed ADME
predictions to be presented in the context of complementary
modeling output, reducing the number of compounds
requiring evaluation through computationally intensive ap-
proaches before selection for synthesis.

As understanding of the SAR of the shallow, flexible target
improved, chemists made increasing use of the interactive ML
application (Figure 2). In contrast to a batch scoring interface,
the interactive application enabled chemists to rapidly draw
ideas, get instant feedback, and iterate to find the most
promising candidates for synthesis. This interactive approach
allowed scientists to explore and reason about the SAR of
multiple design steps at once rather than primarily considering
single point design changes. The interpretability tools,
including reactivity-based prediction of likely sites of
metabolism,18 further helped guide design changes.

Ultimately, the ML ADME models of permeability and
metabolic stability were used in tandem with an existing
structure-based design workflow to elevate the overall quality
of the designs. Using this strategy, Nested co-optimized two
regions of the compound to identify potent, permeable
compounds 2 and 3. The team then used the ML application
to fine-tune physiochemical properties and address metabolic
soft-spots without sacrificing permeability or potency. Com-
pound 4 advanced to cross-species pharmacokinetics (PK) and
was soon followed, within a few weeks, by the identification of
compound 5 with exquisite cell potency and cross-species PK.

■ CONCLUSION
By following these guidelines, ML ADME models can be made
an integral part of the lead optimization process within biotech.
Using ML models does not negate the necessity of collecting
experimental ADME data or eliminate the risk of synthesizing

compounds with unfavorable properties. Nonetheless, it can
meaningfully accelerate a program and improve a chemist’s
ability to cooperatively optimize PK and potency to achieve a
desired PD outcome. When an ADME challenge arises for a
particular property, an effective ML model can be used to
quickly generate and evaluate ideas that might fix the problem,
which can then be experimentally validated. When ADME
properties are not a current challenge, ML models can help
maintain good properties while tuning other attributes and flag
potential issues. Brought together, these uses help turn a lead
into a development candidate faster and identify solutions to
property tradeoffs that enable compounds with better PK−PD
profiles.
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