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In the last century, advances in the understanding and 
engineering of the human body were made possible 
through interdisciplinary efforts in modern medicine, 
biology and biomedical engineering. In parallel, com­
plex and ever more capable machines, such as compu­
ters, mobile devices, sensors, actuators and robots, 
have transitioned from science fiction into daily real­
ities. Despite these advances, artificial interfaces — 
facilitating communication and interactions between 
humans and machines — are still largely primitive, 
leading to short-​term and inefficient interfacing between  
humans and machines. These shortcomings are espe­
cially apparent in the emerging fields of brain–machine 
interfaces, neuroprosthetics, clinical equipment, medical 
implants, wearable and ingestible devices, and virtual or 
augmented reality. Long-​term, efficient, biocompatible 
and seamless communication and interactions between 
humans and machines could lead to breakthroughs in 
these emerging sectors and other technological fields 
but have not been achieved due to lingering challenges. 
For example, conventional probes and arrays used for 
brain–machine interfaces and neuroscientific studies, 
such as the Michigan probes and Utah arrays, com­
monly induce substantial foreign-​body responses, such 
as gliosis and scar formation, severely hampering the 
long-​term reliability and functionality of brain–machine 
interfaces1–6. As another example, implantable glucose 
sensors and insulin pumps for diabetic monitoring and 
management often face substantially limited efficacy in 
the long term owing to fibrotic encapsulation induced 
by a foreign-​body response and subsequent loss of  
the functional interfaces for sensing and delivery to the 
surrounding tissues7–12.

The main challenges of human–machine interfaces 
stem from materials. Existing machines largely employ 
conventional materials, such as metals, silicon, glass, 
ceramics and plastics, to communicate and interact 
with human bodies. However, the hard, dry and abiotic 
nature of these conventional materials is intrinsically 
contradictory with the soft, wet and living nature of 
biological tissues. In recent decades, intensive efforts 
have been devoted to transforming these conventional 
materials into flexible and stretchable structures to con­
formally interface with soft and curvilinear biological 
tissues1,13–17. However, these structural designs do not 
alter the materials’ intrinsic properties, which may still 
hamper their communication and interactions with 
biological tissues. For example, the integration of con­
ventional materials with tissues usually relies on phys­
ical attachment or surgical suturing, methods that face 
challenges such as non-​conformal contact, unstable 
adhesion, tissue damage and/or scar formation15,18,19. As 
another example, the properties of metallic electrodes, 
such as their high rigidity, low interfacial capacitance 
and low charge injection capacity, make them far from 
ideal for the electrical recording and stimulation of soft 
neural tissues1,2,5,17,20–22. In addition, biological tissues 
often recognize these materials, even when in flexible 
and stretchable structures, as foreign bodies due to their 
inherently disparate properties, resulting in an adverse 
foreign-​body response, biofouling, and fibrotic encap­
sulation or fibrosis2,23,24. Such foreign-​body response 
and subsequent fibrotic isolation from the surrounding 
tissues can severely compromise the long-​term reliabil­
ity and efficacy of the communication and interactions 
between humans and machines10,23,25–29.

Capacitance
C=q/V, where q is the charge 
held on the conductor and V  
is the electric potential of the 
conductor. Unit: F.
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Because of their unique similarities to biological 
tissues30–33 (Box 1) and the versatility and flexibility in 
tailoring their properties5,33–37, hydrogels have naturally 
emerged as a promising material candidate to act as 
an alternative or adjunct to conventional materials for 
bridging humans and machines. Hydrogel interfaces — 
both explored in academic research and as commercial 
products — are rapidly emerging in a broad range of 
applications (Fig. 1). For instance, ultrasound-​coupling 

hydrogels have been commercialized and have become 
the standard interfaces between ultrasound equipment 
and human skin for various medical imaging and ther­
apeutic applications37–42. Similarly, commercially avail­
able skin-​adhesive hydrogels have become the main 
candidates for epidermal electrodes used in clinical bio­
electronic recordings, such as in electrocardiography, 
electromyography (EMG) and electroencephalo­
graphy, and in clinical bioelectronic stimulation such as 

Box 1 | Similarities between hydrogels and biological tissues

High water content
The human body contains few organs with a relatively low water content (such as bone, ~25% of weight) and many organs 
with a high water content (such as muscle, ~70% of weight, and brain, ~85% of weight), resulting in an average water 
content of ~70% of body weight270 (see the figure, part a). By contrast, most engineering materials, such as silicon, metals, 
ceramics, plastics and elastomers, are dry and contain little or no water5. Because water in biological tissues serves criti-
cal roles in diverse biological, chemical and physical processes, including nutrient and waste transportation, intercellular 
signalling by waterborne chemicals, and ionic electrophysiological communication, hydrogels with a tissue-​like high 
water content can closely mimic physiological interactions and minimize potential issues caused by dry foreign materials.

Mechanical softness
The human body is largely composed of soft tissues with few exceptions such as teeth and bone. Soft tissues in the human 
body have Young’s moduli typically in the range of 1 Pa to 1 MPa, whereas most conventional solids, such as elastomers, 
plastics, inorganics and metals, exhibit Young’s moduli several orders of magnitude higher2,13 (see the figure, part b). 
This stark difference in mechanical properties is one of the major sources of tissue damage, foreign-​body response and 
scar tissue formation around the rigid devices interfacing with the human body1–3,5. By contrast, hydrogels can have 
Young’s moduli similar to those of biological tissues owing to their structural and compositional similarities as highly 
hydrated polymer networks.

Biocompatibility
Biocompatibility is one of the most crucial requirements for interfacing with the human body while avoiding adverse bio-
logical interactions and outcomes. Owing to their non-​toxic and biocompatible nature, hydrogels have been widely stud-
ied and adopted in tissue engineering31, regenerative medicine29,32 and biomedical devices41 in both academic research and 
commercial products. Furthermore, hydrogels can offer antifouling64,66–68 functions and reduce foreign-​body responses69–78 
when in contact with physiological environments.

Biofunctionality
Both biological tissues and hydrogels are water-​based polymer systems, and a broad range of biopolymers and synthetic 
polymers with biologically important functional groups can be used as constituents for hydrogels31,33,80,81. For example, 
various extracellular matrix components (such as collagen, gelatin and hyaluronic acid) as well as chemically modified 
biopolymers and synthetic polymers (such as arginyl-​glycyl-​aspartic acid (RGD) peptide-​modified alginate and polyethyl-
ene glycol) have been adopted in hydrogels to facilitate biological functionalities (such as cell adhesion253 and tissue 
engineering29,31).
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transcutaneous electrical nerve stimulation5,41–45. Besides 
their application as ultrasound-​coupling agents and bio­
electrodes, hydrogels have also been intensively explored 
as sensors, actuators and drug reservoirs in wearable 
devices such as sweat sensors46–48, contact lenses49–52, 
and wound dressings and bandages53–56. In addition, 
taking advantage of their edible, food-​like proper­
ties and tunable swelling and degradation properties, 
hydrogels have recently emerged as a promising carrier 
for ingestible sensors and devices capable of long-​term 
retention and functions in the gastrointestinal tract57–59. 
Furthermore, hydrogels with designed mechanical prop­
erties and chemical compositions have been shown to 
substantially enhance the biocompatibility of implant­
able devices by providing highly lubricious surfaces60–65, 
reducing biofouling64,66–68 and alleviating foreign-​body 
responses69–78. This enhanced biocompatibility paves the 
way for various implantable devices to form long-​term 
reliable and functional interfaces with the human body.

Despite the great promise and recent advances in 
hydrogel interfaces, to the best of our knowledge, there 
is no systematic discussion on hydrogel interfaces for 
the merging of humans and machines. The literature 
on hydrogels as scaffolds for tissue engineering31,32,79–83, 
carriers for drug delivery84–87 and emerging materials 
for soft machines34,88 has been extensively reviewed, but 
existing reviews usually do not account for the appli­
cations of hydrogels as bridging interfaces between 
humans and machines nor do they provide the require­
ments or principles for the design of hydrogel interfaces. 
Such a systematic discussion is central for the future 
development of this nascent yet impactful field.

In this Review, we first provide a comprehensive sum­
mary of recent advances in hydrogel interfaces using 
examples from both academic literature and commercial 
products. Based on the nature of the communication and 
interactions between humans and machines, the func­
tions of hydrogel interfaces can be broadly categorized 
into mechanical, acoustic, electrical, optical, chemical and 
biological modes. Thereafter, we systematically discuss 
the property requirements for hydrogel interfaces to ena­
ble various functional modes and provide the design prin­
ciples to achieve such properties. We conclude with future 
perspectives on next-​generation hydrogel interfaces and 
the remaining challenges and opportunities.

Applications of hydrogel interfaces
Along with various devices and machines in contact and 
interacting with human bodies, hydrogel interfaces have 
emerged and have been adopted in diverse applications 
in both academic and commercial settings (Table 1). The 
current applications of hydrogel interfaces can be largely 
categorized based on the invasiveness of their inter­
actions with various parts of the human body (Fig. 1). 
Hydrogel interfaces for epidermal and wearable appli­
cations (Fig. 1a) provide non-​invasive communication, 
whereas hydrogel interfaces for implantable applications 
(Fig. 1b) are invasive and often provide long-​term contact 
with internal organs and tissues. Hydrogel interfaces are 
also increasingly adopted in ingestible and minimally 
invasive applications within body cavities (such as tho­
racic and abdominal cavities) or tubular organs (such as 
intestines and blood vessels) (Fig. 1c). In this section, we 
review current applications of hydrogel interfaces from 
each category using examples from the literature and 
commercially available products (Tables 1 and 2).

Epidermal and wearable applications. Skin is the largest 
organ in the human body and forms the body’s outer­
most interface to external environments15. The facile 
and non-​invasive nature of epidermal interfacing has 
encouraged the development of a wide range of epi­
dermal and wearable devices, many of which have been 
commercialized and adopted as the standard of care 
in clinical practice. Despite its environment-​exposed 
nature, skin possesses starkly different properties than 
conventional materials used in devices and machines. 
To bridge these dissimilarities and allow stable function­
ality, diverse hydrogel interfaces have been adopted in 
epidermal and wearable applications (Fig. 1a).

Epidermal electrodes are an essential component 
for various electrical sensing and stimulation devices in 
health monitoring15, diagnostic5,15, therapeutic45,89 and 
human–machine interfacing90 applications. The efficacy 
of epidermal electrical communications is influenced 
by several factors, including conformal mechanical 
contact with skin and the degree of skin hydration5,43,91. 
Conventional metallic electrodes are dry and mechan­
ically stiff; therefore, they face various limitations, such 
as poor interfacial contact with dehydrated skin tissues, 
resulting in high skin–electrode interfacial impedance and 
ineffective electrical communication5. To address these 
limitations, hydrogel interfaces were introduced as coat­
ings on metal electrodes and have become the standard 
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Fig. 1 | Current applications of hydrogel interfaces. Various examples of hydrogel inter-
faces for epidermal and wearable (part a), implantable (part b), and ingestible and minimally 
invasive (part c) applications around the human body. FBR, foreign-​body response.
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electrode coatings in various clinical diagnostic (such 
as electrocardiography, electromyography and electro­
encephalography) and therapeutic (such as transcutane­
ous electrical nerve stimulation) applications. The soft 
and adhesive properties of hydrogel epidermal electrodes 
provide conformal contact with skin, and their high water 
content and high electrical conductivity offer low tissue–
electrode impedance, synergistically leading to effective 
electrical sensing and stimulation. Notably, the majority 
of commercially available and clinically approved epider­
mal electrodes are composed of ionic hydrogel interfaces 
consisting of crosslinked hydrophilic polymers, such as 
polyacrylate copolymers, which have a high water content, 
good skin adhesiveness and dissolved ions (for example, 
potassium chloride) for electrical conductivity5,92 (Table 2).

Furthermore, epidermal diagnostic imaging tech­
niques, such as ultrasonography, rely on hydrogel cou­
plants at the tissue–ultrasound probe interface, owing to 
the tissue-​like mechanical and acoustic characteristics 
of hydrogels38,93–96. Hydrogel interfaces have also been 
widely adopted for the treatment of injured skin in the 
form of wound dressings or epidermal bandages owing 
to their unique capabilities for promoting wound healing 
through dehydration prevention, antimicrobial protec­
tion and transdermal drug delivery53,55,56,97–99 (Table 2).  
In addition, hydrogel interfaces have been used in many 
epidermal health monitoring and diagnostic applica­
tions100. For example, the high water absorption of vari­
ous chemical-​sensing hydrogels enables their use as 
diagnostic devices based on epidermally collected body 
fluids such as sweat51,101–107.

Beyond skin, hydrogel interfaces have been widely 
utilized in ophthalmic wearable devices to interface 
with the eye. The soft, wet and transparent nature of 
hydrogels and their optical properties, such as their 
tunable refractive index, are highly desirable for oph­
thalmic interfacing. The majority of contact lenses, 
including clinically approved products based on 
poly(2-​hydroxyethyl methacrylate) (Acuvue, J&J) and 
polyvinyl alcohol hydrogels (Dailies, CIBA Vision) 
(Table 2), have been based on hydrogels since the first 
commercial launch of hydrogel-​based soft contact lenses 
in the 1970s108,109. More recently, various health monitor­
ing and diagnostic functions have been introduced to 
ophthalmic hydrogel interfaces to create smart contact  
lenses49–52,108,110.

Implantable applications. In order for devices or 
machines to interface over the long term with internal 
tissues and organs, they often need to be implanted 
into the human body. Unlike non-​invasive epidermal 
interfacing, implantable applications involve invasive 
surgical procedures and introduction of foreign objects 
within the human body. As a result, implantable appli­
cations face various challenges, including tissue dam­
age, foreign-​body responses and subsequent functional 
failure of the implants. These challenges often originate 
from and are substantially exacerbated by disparate 
properties between biological tissues and the implants. 
Hydrogel interfaces have been adopted for diverse 
implantable applications to resolve or alleviate these 
challenges (Fig. 1b).

Table 1 | Current applications, functional modes and translation statuses of hydrogel interfaces

Applications Examples Functional mode Translation status Refs.

Epidermal 
and wearable 
applications

Epidermal hydrogel electrodes Mechanical, electrical Academic and commercial 5,15,45,89,157

Hydrogel wound dressing Mechanical, chemical, 
biological

Academic and commercial 53–56,99

Hydrogel drug-​delivery patch Mechanical, chemical, 
biological

Academic and commercial 53,97,98

Hydrogel ultrasound couplants Mechanical, acoustic Academic and commercial 38,93,94,170

Hydrogel contact lenses Mechanical, optical Academic and commercial 49–52,108–110

Hydrogel glucose sensors Electrical, optical, chemical Academic 262,263

Hydrogel pH sensors Electrical, chemical Academic 54

Implantable 
applications

Tissue adhesives and sealants Mechanical, chemical, 
biological

Academic and commercial 113–117,264

Hydrogel electrode coatings Mechanical, electrical Academic 5,76–78

Hydrogel waveguides Mechanical, optical Academic 110,141–144

Drug-​eluting hydrogels Chemical, biological Academic and commercial 42,84–87,167

Tissue scaffolds Chemical, biological Academic and commercial 29,31,259,265

Hydrogel glucose sensors Chemical, biological Academic 266,267

Anti-​FBR hydrogel coatings Mechanical, biological Academic 64,66–68,147

Ingestible 
and minimally 
invasive 
applications

Ingestible hydrogels for drug 
delivery or sensing

Mechanical, chemical, 
biological

Academic 57–59

Ingestible hydrogels for weight 
control

Mechanical, chemical, 
biological

Academic and commercial 58,150,268

Low-​friction hydrogel coatings 
for minimally invasive devices

Mechanical, biological Academic and commercial 64,151–154

FBR, foreign-​body response.

Electrical conductivity
For an ideal conductor, the 
electrical conductivity is 

L RA/σ = , where L is the  
length, A is the cross-​sectional 
area and R is the electrical 
resistance of the material.  
The reciprocal of electrical 
conductivity is electrical 
resistivity. Unit: Sm-1.

Refractive index
n=c/v, where c is the speed of 
light in a vacuum and v is the 
speed of light in the material. 
Unitless.
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The surgical repair of injured tissues and implanta­
tion of devices on targeted organs commonly requires 
establishing robust mechanical interfaces between the 
injured tissues and between the devices and organs, 
respectively. Conventional techniques to form mechani­
cal interfaces, such as sealing and fixation, rely on sutures 
and surgical staples111. However, sutures and surgical 
staples commonly damage tissues, and their substan­
tial mismatch with tissue properties can cause various 
adverse outcomes and complications, including scar 
formation, impaired healing and leakages112. In recent 
decades, tissue adhesives and sealants have been devel­
oped to address the limitations of sutures and surgical 
staples113–115. Because hydrogels provide robust, biocom­
patible and tissue-​matching adhesive interfaces, a broad 
range of hydrogels based on synthetic polymers116,117 
(such as polyethylene glycol) and biopolymers118,119 
(such as fibrin or gelatin) have been adopted in implant­
able tissue adhesives for tissue repair114 and integrated 
in devices both in academic studies and in clinically 
approved products19 (Table 2).

Implantable electrodes for neurological treatment 
(such as deep brain stimulation)120–122, for rehabilitation 
(such as spinal cord stimulation)123–127 and for functional 
augmentation involving, for example, pacemakers128–131, 
cochlear implants132 or neuroprosthetics2,133–135, require 

reliable bioelectronic communication and modula­
tion over extended periods of time. However, conven­
tional metallic implantable electrodes can elicit adverse 
responses such as fibrosis and scar formation from the 
target and surrounding tissues, resulting in functional 
loss owing to a decrease in signal-​to-​noise ratios dur­
ing recording and a decrease in charge injection capacity 
during stimulation2,4,6,21. To address these issues, hydrogel 
interfaces have been introduced as adjunct or alternatives 
to metallic electrodes to provide improved biocompati­
bility69,76,136,137 due to their tissue-​matching Young’s modulus 
and lower bending stiffness as well as improved electrical 
properties5,77,78,138,139 resulting from their lower impedance 
and higher charge injection capacity.

Optical interfacing has also been utilized in implant­
able applications for photomedicine in photothermal ther­
apy, photodynamic therapy and photobiomodulation110 
as well as for the modulation of neural activities in 
optogenetics21,140, where optical communication with 
the target tissue commonly relies on implanted wave­
guides110. However, conventional optical waveguides 
are made of silica or plastics and their mechanical mis­
match with biological tissues can cause various adverse 
outcomes and deterioration of functionalities110. To 
avoid these limitations, hydrogel-​based implantable 
optical waveguides with tissue-​matching mechanical 

Charge injection capacity
Amount of charge that the 
electrode can inject per unit 
area without causing 
irreversible electrochemical 
reactions or tissue damage.

Young’s modulus
The Young’s modulus of a 
material in the linear elastic 
region is E=S/ε, where S is  
the engineering stress and ε  
is the engineering strain of the 
material. Unit: Pa.

Table 2 | A representative list of clinically approved materials for hydrogel interfaces

Hydrogel material Product/company Application Approved indication

Epidermal and wearable applications

Polyacrylate copolymer (with 
dissolved potassium chloride)

Red Dot/3M Hydrogel skin electrodes Electrocardiograph electrodes (FDA 
approved)

Polyacrylate copolymer (with 
dissolved potassium chloride)

Self-​Adhesive Electrodes/Philips Hydrogel skin electrodes Cutaneous electrodes for TENS (FDA 
approved)

Polyethylene glycol Aquaflo/Covidien Hydrogel wound dressings Wound dressings for first- and 
second-​degree burns (FDA approved)

Polyacrylic acid Aquasonic/Parker Laboratories Hydrogel ultrasound couplants Coupling medium for ultrasound 
transmission (FDA approved)

Poly(2-​hydroxyethyl methacrylate) Acuvue/J&J Hydrogel contact lenses Daily wear contact lens (FDA approved)

Polyvinyl alcohol Dailies/CIBA Vision Hydrogel contact lenses Daily wear contact lens (FDA approved)

Implantable applications

Polyethylene glycol CoSeal/Baxter Tissue adhesives Adjunct haemostasis for vascular 
reconstitution (FDA approved)

Fibrin Evicel/J&J Tissue adhesives Adjunct haemostasis (FDA approved)

Gelatin LifeSeal/LifeBond Tissue adhesives Staple-​line reinforcement in 
gastrointestinal surgery (CE marked)

Poly(2-​hydroxyethyl methacrylate) Vantas/Endo Pharmaceuticals Drug-​eluting hydrogels Palliative treatment of prostate cancer 
(FDA approved)

Hyaluronic acid Euflexxa/Ferring Pharmaceuticals Tissue scaffolds Knee osteoarthritis (FDA approved)

Alginate Algisyl-​LVR/LoneStar Heart Tissue scaffolds Advanced heart failure (CE marked)

Ingestible and minimally invasive applications

Cellulose Plenty/Gelesis Ingestible hydrogels Ingestible hydrogels to aid in weight 
management (FDA approved)

Polyvinylpyrrolidone SpeediCath/Coloplast Low-​friction hydrogel coatings Urinary catheters (FDA approved)

Poly(methyl vinyl ether/maleic 
anhydride)

Radifocus/Terumo Corporation Low-​friction hydrogel coatings Cardiovascular guidewires (FDA approved)

Vortek/Coloplast Low-​friction hydrogel coatings Ureteral stents (FDA approved)

Date of search: December 2021. CE, Conformité Européenne (European Conformity); TENS, transcutaneous electrical nerve stimulation.
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properties have been developed as a promising alternative 
to conventional stiff optical waveguides110,141–144.

Sustained delivery of pharmacological substances 
from implanted reservoirs is one of the major strategies 
for the treatment of various diseases145. Hydrogels have 
played an important role in the development and transla­
tion of implantable drug delivery systems owing to their 
favourable characteristics, including high water content, 
ease of chemical modification and incorporation of 
drugs, biocompatibility, and biodegradability84,87,146. As 
a result, various hydrogels, such as poly(2-​hydroxyethyl 
methacrylate), hyaluronic acid and alginate, have been 
adopted in clinically approved products as implant­
able drug reservoirs or tissue scaffolds31,42,87 (Table 2). 
In implantable applications, such as for sustained drug 
delivery, the foreign-​body response and subsequent 
blockage of drug release by biofouling and fibrosis 
around the implanted devices is a critical issue ham­
pering long-​term efficacy9. To alleviate this challenge, 
diverse anti-​foreign-​body response hydrogel inter­
faces have been adopted in implantable machines and 
devices in academic studies to minimize the formation 
of fibrotic encapsulation (by reducing protein absorption 
and inflammatory reactions) and to preserve long-​term 
functional efficacy64,66–68,147.

Minimally invasive applications. Interfacing within 
body cavities, such as abdominal and thoracic cav­
ities, and tubular organs, such as the intestines, blood 
vessels and the urinary tract, provides minimally inva­
sive yet close interactions with the human body. Orally 
administered ingestible devices have been developed 
for diverse diagnostic and therapeutic gastrointesti­
nal applications59. Recent advances in endoscopic and 
robot-​assisted surgical platforms have enabled a rapid 
growth in minimally invasive and robotic surgeries148. 
Despite the minimally invasive nature of these applica­
tions, close interactions and communication with the 
internal tissues and organs require biocompatible and  
benign interfacing. Various hydrogel interfaces have 
been incorporated in a wide range of ingestible and  
minimally invasive devices to offer more favourable  
tissue–device interactions and communication (Fig. 1c).

Taking advantage of the soft, biocompatible and 
highly swellable characteristics of hydrogels, several 
hydrogel-​based gastrointestinal-​retentive ingestible 
devices have been developed for health monitoring58,149, 
drug delivery57 and weight control150, including several 
clinically approved products such as weight control 
devices based on cellulose hydrogels (Table 2). Swollen 
hydrogels have similar mechanical properties to food, 
providing favourable mechanical interactions with the 
gastrointestinal organs during their administration, 
retention and digestive passage from the body.

Endoluminal insertion and navigation of catheters, 
guidewires and stents are a routine part of minimally inva­
sive surgeries and daily patient care. However, mechanical 
interactions of the inserted devices with narrow tubular 
organs can cause complications such as frictional tissue 
damage and infection. To alleviate these issues, various 
hydrogels have been introduced in clinically approved 
catheters (in particular, polyvinylpyrrolidone hydrogels), 

guidewires (in particular, poly(methyl vinyl ether/
maleic anhydride) hydrogels) and stents (in particular, 
poly(methyl vinyl ether/maleic anhydride) hydrogels) in 
the form of thin coatings to provide soft, low-​friction and 
antifouling interfacing with the endoluminal surface of 
tubular organs64,151–156 (Table 2).

Functional modes of hydrogel interfaces
Machines and the human body can interact and com­
municate via diverse functional modes depending on the 
desired applications and the characteristics of the target 
tissues and organs. Hence, hydrogel interfaces bridging 
machines and the human body also need to incorporate 
a wide range of functional modes. We classify the func­
tional modes of hydrogel interfaces into six categories: 
mechanical, acoustic, electrical, optical, chemical and 
biological (Table 3 and Fig. 2).

In addition, because a machine can interface with 
the human body via multiple functional modes simul­
taneously, hydrogel interfaces often need to be multi­
functional (Table 1). For example, epidermal electrodes 
require hydrogel interfaces to function not only in the 
electrical mode through electrical conduction but also 
in the mechanical mode exploiting skin-​matching 
mechanical properties and adhesiveness5,157. Therefore, 
the rationally guided design and development of mate­
rials for hydrogel interfaces necessitate the systematic 
consideration of various functional modes and the cor­
responding desired properties to enable multifunctional 
applications. In this section, we discuss the six major 
functional modes of hydrogel interfaces and the desired 
properties for each functional mode.

Mechanical mode. The mechanical mode of hydrogel 
interfaces is essential because it guarantees their integ­
rity and robustness as well as their stable adhesion and 
matching rigidity with the target tissues and organs. 
Hydrogel interfaces in the mechanical mode are required 
to possess a set of bulk and interfacial properties 
(Fig. 2a and Table 3).

Many machines and devices require prolonged con­
tact with the human body. For example, wearable devices 
for health monitoring form close contact with the epi­
dermis for days to weeks. Long-​term implantable devices 
can stay within the body contacting internal tissues 
and organs over months to years. The various tissues and 
organs in the human body possess substantially different 
mechanical stiffness. Mechanical interactions between 
the target tissues or organs and hydrogel interfaces 
with dissimilar mechanical stiffness can cause impaired 
functional efficacy, for example, through non-​conformal 
contact, as well as long-​term adverse tissue responses 
such as foreign-​body response, tissue damage or scar 
formation2,33,88,114. Therefore, a desired bulk property of 
a hydrogel interface is a mechanical stiffness, or Young’s 
modulus, matching that of the target tissue or organ.

The human body is a dynamic system mechan­
ically interacting with external environments and 
within itself. Hence, hydrogel interfaces also face highly 
dynamic mechanical interactions with the human body. 
Preventing bulk failures caused by mechanical loads 
and deformation is a key design criterion to ensure the 
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reliable functionality of hydrogel interfaces. Thus, a high 
fracture toughness is another desirable bulk property for 
hydrogel interfaces158–161.

Various applications of hydrogel interfaces, such 
as epidermal electrodes, tissue adhesives and sealants, 
require interfacial integration with the target tissues to 
provide the desired functionality (Table 1). Interfacial 
integration of hydrogel interfaces with the human body 
requires establishing and maintaining robust adhesion 
to biological tissues. Adhered hydrogel interfaces can 
undergo interfacial failures, which can result in func­
tional loss, for example, through the detachment of 
devices, or detrimental clinical complications such as 
leakage from failed tissue sealants. To achieve robust 
interfacial integration, hydrogel interfaces require high 
interfacial toughness116,117,162–165.

Another important function of hydrogel interfaces 
in the mechanical mode is the reduction of friction 
and wear with the target tissues and organs. Interfacial 

mechanical interactions between hydrogel interfaces 
and the target tissues and organs can cause frictional 
wear. Sustained frictional wear can cause the interfacial 
erosion of poorly lubricated hydrogel interfaces and/or 
tissue damage. Hence, a low friction coefficient is desir­
able to minimize frictional wear in applications such as 
minimally invasive medical devices64,154 and artificial 
cartilage65,166.

Acoustic mode. Owing to its non-​destructive and non-​
invasive nature, the sound wave-​based diagnosis of dis­
eases and health conditions has become standard clinical 
practice94. Furthermore, the capability of ultrasound to 
deliver energy into deep tissues in a non-​destructive 
manner has been utilized in various therapeutic appli­
cations, including thermal treatments and non-​thermal 
therapies exploiting mechanical effects, such as ultra­
sonic lithotripsy96, as well as in drug delivery167,168. 
Hence, the acoustic mode of hydrogel interfaces can be 

Fracture toughness
G U Ad /d ,c,bulk bulkΓ = = −  where 

Gc,bulk is the critical energy 
release rate that drives bulk 
crack propagation in  
the material, Ubulk is the total 
potential energy of the mate-
rial and A is the crack area 
measured in the undeformed 
state33,159. Unit: Jm-2.

Interfacial toughness
Γ = = −G U Ad /d ,c

inter
,inter inter  

where Gc,inter is the critical 
energy release rate that drives 
interfacial crack propagation, 
Uinter is the total potential 
energy of the adhered materi-
als and A is the crack area 
measured in the undeformed 
state33,162. Unit: Jm-2.

Table 3 | Desired properties of hydrogel interfaces for various functional modes

Property Design criteria Target tissues Relevant clinical 
applications

Examples

Mechanical mode

Young’s modulus Young’s modulus 
matching that of the 
target tissue

Skin, muscle, nerve, 
internal organs

Wound dressings, tissue 
adhesives, skin or nerve grafts

GelMA hydrogels189,190; alginate 
hydrogels191–193; chitosan hydrogels194–196

Tendon, ligament Tendon replacement Aligned-​nanofiber composite hydrogels197–201

Bone Bone grafts Hydroxyapatite-​mineralized hydrogels203,204

Fracture toughness High fracture toughness All tissues Tendon or cartilage 
replacement

Double-​network hydrogels158,159; 
nanocomposite hydrogels160,161

Interfacial 
toughness

High interfacial 
toughness

All tissues Wound dressings, tissue 
adhesives, wearable/
implantable electrodes

Tough adhesive hydrogels116,117,162–164; 
hydrogel microneedles165

Friction coefficient Low friction coefficient Cartilage, meniscus Cartilage replacement Hydrogels with repulsive dangling 
chains61; polymer-​filled hydrogels62,213; 
lipid-​incorporating hydrogels65

Acoustic mode

Acoustic 
impedance

Acoustic impedance 
matching that of the 
target tissue

Skin Ultrasound couplants Hydrogel ultrasonic couplants93,169,170

Electrical mode

Electrical 
conductivity

High electrical 
conductivity

Brain, spinal cord, 
peripheral nerve, 
heart, muscle

Wearable/implantable 
electrodes

Conducting polymer hydrogels77,221,223; 
CNT-​composite hydrogels219; 
graphene-​composite hydrogels220;  
metal nanowire-​composite hydrogels217,218Capacitance High capacitance

Optical mode

Transmittance High transmittance Eye Contact lenses Silicone hydrogel contact lenses108

Refractive index Tunable refractive index All tissues Implantable waveguides Step-​index hydrogel fibres141,142,174

Chemical mode

Diffusivity Tunable diffusivity All tissues Drug delivery Porous hydrogels234,235

Biodegradability Tunable biodegradability All tissues Implantable medical devices Oxidized alginate hydrogels239,240

Binding affinity High binding affinity  
to target chemical

All tissues Wearable/implantable 
sensors

Glucose-​sensing hydrogels178,247

Biological mode

Cell adhesiveness High cell adhesiveness All tissues Tissue scaffolds RGD peptide-​modified hydrogels252,253

Foreign-​body 
response

Low foreign-​body 
response

All tissues Implantable medical devices Zwitterionic hydrogels66,70,73; anti-​FBR 
drug-​eluting hydrogels258

CNT, carbon nanotube; FBR, foreign-​body response; GelMA, gelatin methacrylate; RGD, arginyl-​glycyl-​aspartic acid.
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Fig. 2 | Functional modes of hydrogel interfaces. Various functional modes 
of communication and interactions between humans and machines via 
hydrogel interfaces, including mechanical (part a), acoustic (part b), electrical 
(part c), optical (part d), chemical (part e) and biological (part f) modes and 
the desired properties of hydrogel interfaces for each mode. σtissue, conduc-
tivity of the tissue media; AP, action potential; Ce, capacitance of the hydrogel 

interface; FBR, foreign-​body response; IAP, target cell’s transmembrane cur-
rent amplitude of action potential; Iinjection, current injected to the target tissue 
by electrophysiological stimulation; r, distance between the electrode and 
the target cell; Re, resistance of the hydrogel interface; Ric, interconnect resist-
ance; Vrecording, electric potential of the electrophysiological recording; 
Vstimulation, applied electric potential for electrophysiological stimulation.
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exploited for two types of applications: acoustic imag­
ing by facilitating the delivery of sound waves to and 
reflection from the target, such as in ultrasonography, 
and acoustic stimulation by facilitating the delivery  
of sound waves to the target such as in ultrasonic 
lithotripsy (Fig. 2b).

Ultrasonic transducers and probes used for these 
applications are made of conventional materials with 
an acoustic impedance substantially different from that 
of skin33. Furthermore, the high mechanical rigid­
ity of the ultrasonic transducers and probes prevents 
their conformal interfacial contact with skin, result­
ing in air-​filled gaps that also have disparate acoustic 
impedance compared to skin. The resultant mismatch 
in acoustic impedance at the skin–probe interface can 
severely hinder the transmission of acoustic waves owing 
to interfacial reflections and scattering169, deteriorating 
functional efficacy (for example, decreasing the quality 
of sonographic images). Hence, tissue-​matching acoustic 
impedance and conformal interfacial contact with skin 
are advantageous for hydrogel interfaces that work in the 
acoustic mode93,169,170 (Fig. 2b and Table 3).

Electrical mode. Machines can communicate and inter­
act with electrically active tissues and organs in the 
human body, such as the brain, nerves, muscles and 
heart, through hydrogel interfaces functioning in the 
electrical mode5. The electrical mode of hydrogel inter­
faces can be used in two types of applications based on 
the direction of electrical communication: from the 
human body to hydrogel interfaces for electrophysio­
logical recording, and from hydrogel interfaces to the 
human body for electrophysiological stimulation (Fig. 2c 
and Table 3).

Based on a simplified equivalent circuit model5 
(Fig. 2c), the electrical potential in electrophysiological 
recording and the injected current in electrophysiological  
stimulation can be quantitatively expressed as:

V
πσ r R

sC R I= 1
4

1 + (1)recording
tissue e
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where σtissue is the conductivity of the tissue, r is the dis­
tance between the electrode and the target cell, Re is the 
resistance of the hydrogel interface, s is the complex 
frequency of the action potential (for recording) or the 
stimulation waveforms (for stimulation), Ce is the capac­
itance of the hydrogel interface, Ric is the interconnect 
resistance, IAP is the target cell’s transmembrane cur­
rent amplitude of action potential, Iinjection is the current 
injected to the target tissue by the electrophysiological 
stimulation, and Vstimulation is the applied electric potential 
for electrophysiological stimulation5.

In electrophysiological recording, a high Vrecording 
is desirable. Hence, for given physiological (σtissue, r, 
s, IAP) and recording (Ric) conditions, high electrical 

conductivity (low Re) and high capacitance (high Ce) 
are advantageous. Notably, physiological environments 
exhibit native ionic conductivity (0.3–0.7 Sm-1)19,171 
because of the high water content of biological tissues 
(Box 1) and their rich ionic compositions comprised of 
salts and charged proteins. Hence, the electrical con­
ductivity of hydrogel interfaces should be substantially 
higher than that of the surrounding tissue to ensure the 
quality of recorded signals5,172,173.

In electrophysiological stimulation, a high Iinjection, often 
measured as charge injection capacity, is desirable. Hence,  
for a given stimulation device (Ric) and input (Vstimulation), high  
electrical conductivity (low Re) and high capacitance 
(high Ce) are advantageous. Therefore, high electrical 
conductivity and high capacitance are desirable proper­
ties of hydrogel interfaces in the electrical mode for both 
recording and stimulation applications.

Optical mode. The optical mode of hydrogel interfaces 
relies on the transmission and delivery of light to the 
human body (Fig. 2d and Table 3). Unblocked transmis­
sion of incident light to the eye is a critical requirement 
for visual functionality and eyesight. Hence, hydrogel 
interfaces for ophthalmic applications require high 
transmittance to minimize the attenuation of transmitted 
light to the eye108,110. Beyond ophthalmic interfacing, the 
delivery of a broad spectrum of light to diverse tissues 
and organs is enabling the use of hydrogel interfaces 
for photonic diagnosis and treatment110. Light delivery 
requires an optical pathway typically in the form of a 
waveguide that provides directional guidance for the 
transmitted light, where the transmittance and refrac­
tive index respectively modulate the transmission and 
internal reflection of light143,144. Therefore, hydrogel 
interfaces for light delivery require high transmittance 
and a tunable refractive index141,142,174.

Chemical mode. Physiological activities involve diverse 
chemical processes and reactions and, therefore, chemi­
cal interactions with the human body are one of the key 
functional modes of hydrogel interfaces. The high water 
content of biological tissues and hydrogel interfaces 
inherently allows the exchange of waterborne chemicals. 
Based on the direction of the chemical communication, 
the chemical mode of hydrogel interfaces can be further 
divided into two types: from hydrogel interfaces to the 
human body for chemical delivery, and from the human 
body to hydrogel interfaces for chemical sensing (Fig. 2e 
and Table 3).

Chemical delivery is commonly utilized for the 
administration of pharmacological substances, such 
as drugs and other biologics, for therapeutic interven­
tions and treatments84,86,87,145. The therapeutic efficacy  
and toxicity of drugs are highly sensitive to their dosage and  
release profile; therefore, the capability to engineer 
controlled release from hydrogel interfaces is a critical 
requirement145. Chemicals within hydrogel interfaces 
can be released to the surrounding tissue by diffusion 
or by degrading the hydrogel. The rate and profile of 
chemical delivery by diffusion are determined by the 
specific diffusivity of the chemicals in the hydrogel84, 
whereas the rate and profile of chemical delivery by 

Friction coefficient
=μ f N/ , where f is the 

measured friction force and  
N is the applied normal force 
to the material. Unitless.

Acoustic impedance
For a homogeneous material, 
the acoustic impedance is 
Z K ,eff effρ=  where effρ  is the 
effective density and Keff is  
the effective bulk modulus  
of the material. Unit: Pa∙sm−3.

Transmittance
T=I/I0, where I0 is the intensity of 
incident light and I is the inten-
sity of transmitted light through 
the material. Unitless and often 
denoted in percentage.
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hydrogel degradation rely on the biodegradability of the 
hydrogel84. Because different drugs have different sizes 
and interactions with hydrogel matrices, tunable mesh 
sizes, interactions with chemicals (such as binding and 
release) and/or biodegradability are highly desirable for 
chemical delivery87.

The sensing of a certain chemical species requires 
selectivity in interactions between the target chemical 
and hydrogel interfaces146,175–179. This selectivity can be 
controlled by tuning the binding affinity to the target 
chemical as a higher binding affinity provides a higher 
selectivity177. Hence, a high binding affinity to target 
chemicals is desirable for selective chemical sensing.

Biological mode. Interfaces between machines and  bio­
logical tissues inherently involve a broad range of  
biological interactions that substantially influence the 
machines’ efficacy, reliability and biosafety. As a result, 
the biological mode of hydrogel interfaces is of essential 
importance, especially in applications that require higher 
invasiveness and long-​term interactions with the human 
body such as implantable devices. The biological mode 
of hydrogel interfaces can be divided into various types 
depending on the application requirements: promotion 
of biological activities (such as cell adhesion, prolifer­
ation, infiltration and differentiation) and suppres­
sion of biological activities (such as anti-​foreign-​body 
responses)180 (Fig. 2f and Table 3).

Cell adhesion and infiltration to hydrogel interfaces 
and subsequent partial or full remodelling of the hydro­
gel interfaces by native tissues are favourable for vari­
ous implantable applications. For example, implanted 
devices for drug delivery and tissue repair (such as tis­
sue adhesives and sealants) require the gradual infiltra­
tion of cells from the surrounding tissue with ultimate 
resorption and tissue remodelling to avoid the need for 
surgical removal of the devices and potential long-​term 
adverse effects such as chronic inflammation87,114,181. 
Cellular interactions and tissue remodelling processes 
rely on the initial attachment of cells to the hydrogel, 
which is followed by the progressive degradation of the 
hydrogel and infiltration of cells31,35,81,182,183. Hence, high 
cell adhesiveness and biodegradability are important in 
applications where tissue remodelling is desired.

Regulating unfavourable biological interactions 
between the implanted device and the surrounding tis­
sue is also an important function of hydrogel interfaces. 
Biofouling and foreign-​body response in physiological 
environments and the resultant fibrosis can be detrimen­
tal to the long-​term efficacy of hydrogel interfaces4,23. 
Because fibrotic encapsulation and scar tissues possess 
much lower electrical conductivity and chemical diffu­
sivity than native tissues, they substantially reduce the 
efficacy of electrical sensing and stimulation2–5,173,184 
as well as of chemical delivery and sensing9,23,185–188. 
Therefore, a low foreign-​body response is highly desir­
able for efficient long-​term communication in the 
electrical, chemical and optical modes28,185,188.

Hydrogel–machine interfaces. In addition to hydro­
gel–tissue interfaces, interfaces between hydrogels and 
machines are also important. To avoid interfacial failure 

between hydrogels and machines, hydrogel–machine 
interfaces require robust integration with high interfacial 
toughness162,163. For the acoustic, electrical and optical 
modes of hydrogel interfaces, the robust integration 
between hydrogels and machines should also provide 
high acoustic transmittance, high optical transparency162 
and high electrical conductivity139, respectively. In addi­
tion, chemical delivery and sensing can be performed by 
a machine, such as a drug reservoir or a sensor coated 
in the hydrogel, instead of by the hydrogel itself. In this 
case, a high permeability or diffusivity of the chemicals 
at the hydrogel–machine interface is required to allow 
unhindered transportation of chemicals between the 
target tissue and the machine87. This Review focuses 
primarily on hydrogel–tissue interfaces but several 
reviews are available that discuss hydrogel–machine 
interfaces33,34,88.

Design principles for hydrogel interfaces
Enabling the functional modes of hydrogel interfaces 
requires the implementation of various desired hydro­
gel properties (Table 3). Although hydrogels can offer 
diverse properties, achieving optimal properties for 
a desired functional mode is complex33,37. As a result, 
Edisonian approaches based on trial and error have 
limited success5,33, particularly for the development of 
multifunctional hydrogel interfaces.

In this section, we summarize rational design princi­
ples to achieve desired properties for hydrogel interfaces, 
providing some examples from the literature (Table 3 
and Fig. 3).

Mechanical properties. Mechanical interactions between 
hydrogel interfaces and the human body are affected by 
the hydrogel bulk and interfacial mechanical properties, 
including Young’s modulus, fracture toughness, inter­
facial toughness and friction coefficient (Fig. 2a). Because 
the mechanical properties of tissues are determined by 
their compositional and structural features, the design 
principles for the mechanical properties of hydrogel 
interfaces are largely based on mimicking the target 
tissue compositional and/or structural characteristics.

Soft tissues (which include skin, muscle, nerve and 
internal organs) have relatively low Young’s moduli 
(1 kPa to 10 MPa) owing to their crosslinked extracellu­
lar matrices (Box 1). Conventional hydrogels consisting 
of crosslinked polymer networks show compositional 
and structural similarities with soft tissues, including 
low Young’s moduli33. The Young’s moduli of conven­
tional hydrogels can be tuned by controlling the density 
of polymer chains per unit volume, n, as follows:

~E nkT (3)hydrogel

where k is the Boltzmann constant and T is the abso­
lute temperature33; n can be engineered by vary­
ing the polymer concentration and the crosslink 
density of the hydrogel33. Hence, diverse conventional 
hydrogels with varying compositions (for example, 
GelMA hydrogels189,190, alginate hydrogels191–193 or  
chitosan hydrogels194–196) have been adopted in hydrogel 
interfaces to provide tissue-​matching Young’s moduli.
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Stiff connective tissues, such as tendons and liga­
ments, exhibit significantly higher (10 MPa to 1 GPa) and 
anisotropic (stiffer in the longitudinal direction) Young’s 
moduli than soft tissues. These properties largely origi­
nate from their highly aligned fibrous microstructures197. 
Several strategies using synthetic polymers such as poly­
vinyl alcohol and biopolymers such as alginate, silk  
and cellulose197–201 have achieved aligned fibrous hydro­
gels that are tendon-​like. Bone tissues show very high 

Young’s moduli (1–30 GPa) owing to the rich mineral 
contents of their main component, hydroxyapatite202. 
Hence, several bone-​matching hydrogel interfaces have 
been developed by incorporating a high concentration of 
hydroxyapatite within the hydrogel matrix203,204.

Notably, additional considerations can arise for 
specific applications. For instance, hydrogel interfaces 
with a Young’s modulus higher or lower than that of 
the target tissue can influence cellular responses via 
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mechanotransduction, a mechanism that modulates 
various biological processes205 such as cell migration 
(for example, fibroblast migration towards a substrate 
with higher Young’s modulus), proliferation or differen­
tiation (for example, promoted osteoblast differentiation 
on a substrate with higher Young’s modulus). Moreover, 
beyond Young’s modulus, rate-​dependent mechanical 
properties, such as viscoelasticity and poroelasticity, 
can be beneficial for certain applications, including tis­
sue engineering83,206 and bioelectronics78,207, to match the 
mechanical properties of the target tissue.

To achieve high fracture toughness, mechanical 
dissipation and stretchability must be synergistically 
combined33,36,208 (Fig. 3a). The resultant fracture toughness 
can be expressed as follows:

Γ = Γ + Γ (4)0 D

where Γ0 is the intrinsic fracture toughness and ΓD is the 
contribution of the mechanical dissipation in the process 
zone (the region ahead of the crack tip that dissipates 
mechanical energy) to the total fracture toughness36,159. 
Because the intrinsic fracture toughness of conven­
tional hydrogels is commonly limited to 10–100 Jm-2, 
high mechanical dissipation is needed for high fracture 
toughness36. The mechanical dissipation of a hydrogel 
within the process zone is proportional to the area of 
the hysteresis loop in its stress–stretch curve during a  
loading–unloading cycle (Fig. 3a). Various strategies to 
provide high mechanical dissipation have been developed,  
such as using double-​network hydrogels158,159 (hydrogels 
consisting of two interpenetrating networks) and nano­
composite hydrogels160,161 (hydrogels containing nano­
scale crosslinkers), to introduce sacrificial networks and 
bonds into hydrogels.

To achieve high interfacial toughness for hydrogels 
adhered to tissues, high fracture toughness and strong 
interfacial linkages between the hydrogel and tissue need 
to be synergistically integrated33,162 (Fig. 3b). The resultant 
interfacial toughness can be expressed as follows:

Γ = Γ + Γ (5)inter
0
inter

D
inter

where Γ0
inter is the intrinsic interfacial toughness from 

the interfacial linkages and ΓD
inter is the contribution 

of the mechanical dissipation in the process zone162,209. 
High intrinsic interfacial toughness can be achieved by 
strong interfacial linkages between the hydrogel and 
the tissue. Mechanisms that provide strong interfacial 
linkages between tough dissipative hydrogels and bio­
logical tissues or machines include covalent bonds19,117,210 
(such as amide bonds), high-​density hydrogen bonds211 
(such as in dry-​annealed polyvinyl alcohol hydrogels) 
and topological interpenetration of polymers116,164 (such 
as in topologically interpenetrating chitosan solutions).

By making the hydrogel surface non-​adhesive, low 
friction coefficients between hydrogels and tissue surfaces 
can be achieved63,212 (Fig. 3c). Non-​adhesive hydrogel sur­
faces with low friction coefficients have been developed 
based on the incorporation of various lubricating compo­
nents, including non-​adhesive dangling chains61 (such as  
for poly(2-​acrylamido-2-​methyl-1-​propanesulfonic 

acid) hydrogels synthesized on Teflon substrates), 
uncrosslinked polymers62,213 (such as for porous poly­
acrylamide hydrogels filled with uncrosslinked alginate) 
and lipids65 (such as for poly(hydroxyethylmethacrylate) 
hydrogels with incorporated phosphatidylcholine lipids). 
In these hydrogels, the lubricating components provide 
non-​adhesive surfaces against the counter surfaces, 
resulting in highly lubricated interfaces with low friction 
coefficients.

Acoustic properties. Tissue-​matching acoustic imped­
ance is critical to minimize interfacial reflection or 
scattering of acoustic waves in the acoustic mode214. 
The acoustic impedance of a homogenous material is 
determined by the effective density and bulk modulus 
of the material. Hence, to match the acoustic imped­
ance of biological tissues, the effective density and bulk 
modulus of the hydrogel interfaces must correspond to 
those of the target tissue94. Notably, because the effective 
density and bulk modulus of hydrogels with high water 
content are almost the same as those of water215, the 
acoustic impedance is approximately the same as that of 
water-​rich biological tissues93,169,170. For example, hydro­
gels with a high water content based on polyacrylamide,  
polyvinyl alcohol, polyacrylic acid and poly(hydroxyethyl­
methacrylate) have been adopted as acoustic couplants 
in both academic and clinical settings93,95,216 (Table 2).

Electrical properties. Electrical conductivity is commonly 
introduced to hydrogels by incorporating electrically 
conductive phases5. However, if these phases are non-​
continuous, they cannot effectively transport electrical 
currents. Hence, the percolation of electrically conductive 
phases within hydrogel interfaces is needed for high electri­
cal conductivity (Fig. 3d). Various conductive fillers, includ­
ing metal nanowires217,218 (such as Ag and Au), carbon 
nanotubes219, graphene19,220 and conducting polymers137 
(such as poly(3,4-​ethylenedioxythiophene):poly(sty­
rene sulfonate), polypyrrole and polyaniline), have been 
used to form percolated electrically conductive phases 
in hydrogel interfaces (Fig. 3d). Notably, hydrogel inter­
faces purely consisting of percolated conducting poly­
mers have been developed and show very high electrical 
conductivity77,138,221–223.

The capacitance of metallic electrodes is typically 
low because it originates from the surface-​bound 
electrical double layer5. Low capacitance at the electrode–
tissue interface can result in high electrical impedance 
and inefficient charge injection, which are highly 
undesirable for electrophysiological recording and 
stimulation, respectively5,172. Incorporating volu­
metric capacitance into the hydrogels to overcome 
the limitation of the surface-​bound electrical double 
layer can help in achieving high capacitance5 (Fig. 3e). 
To incorporate volumetric capacitance, conducting 
polymer-​based hydrogel interfaces have been devel­
oped that can form electrical double layers in the nano­
porous structure of the conducting polymers224,225. 
For example, conducting polymer hydrogels based 
on poly(3,4-​ethylenedioxythiophene):poly(styrene 
sulfonate) have high volumetric capacitance, low 
impedance and high charge injection capacity in wet 

Electrical double layer
Accumulation of charged ions 
around the electrode within 
electrolytic medium under  
the applied electric potential.
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physiological environments, which are required for 
in vivo electrophysiological modulation77,138,139,223.

Optical properties. The transmittance of light in materi­
als is determined by the degree of scattering and blockage 
of the incident light within the material. When the size of  
the hydrogel constituents (for example, the polymer 
aggregates or crystalline domains) is greater than one-​
tenth of the wavelength of the incident light, light scatter­
ing becomes substantially higher, resulting in decreased 
transmittance226. Hence, to achieve high transmittance, 
light scattering must be minimized by limiting the size of 
the hydrogel constituents. This design principle has been 
implemented by minimizing the size of phase-​separated  
polymer-​rich and water-​rich domains141 (such as for poly­
ethylene glycol hydrogels with high molecular weight) 
and by fabricating nanoscale semi-​crystalline domains227 
(such as for nanocellulose-​reinforced polyvinyl alcohol 
hydrogels) to achieve hydrogel interfaces with high 
optical transparency.

Light delivery through optical waveguides relies on 
total internal reflection, which requires a higher refrac­
tive index for the internal medium than for the external 
medium141. Hence, it is critical to ensure that the refrac­
tive index of the hydrogel is higher than that of the target 
tissue141 or the cladding material141,142,174. The refractive 
indices of hydrogels are inversely proportional to the 
hydrogel water content, ranging between the refractive 
index of pure water (n = 1.331) and that of pure polymers 
(n = 1.4–1.7)141. Hence, the refractive index can be tuned 
by controlling the water content of the hydrogel inter­
faces. For example, step-​index hydrogel optical fibres 
have been developed based on a hydrogel core (such as 
with polyethylene glycol hydrogels) and cladding (such 
as with alginate hydrogels) with a varying equilibrium 
water content142,174.

Chemical properties. The diffusivity of chemicals in 
hydrogel interfaces (Dhydrogel) is determined by the inter­
actions between the chemicals and the polymer net­
works of the hydrogel228,229. In particular, the relative size  
of the chemicals (their radius rs) and of the hydrogel 
network (the mesh size ξ) significantly affect chemical 
diffusivity87,145:

~










D

D
r
ξ

exp − (6)
hydrogel

water

s

where Dwater is the diffusivity of the chemical in 
water230–232.

When the size of the chemical is smaller than the 
hydrogel mesh size, the chemical can diffuse freely within 
the hydrogel. Otherwise, the diffusion of the chemical is 
substantially slowed by steric hindrances from the poly­
mer network. Hence, choosing the mesh size based on 
the size of the chemical employed for delivery or sensing 
tunes the diffusivity of the chemical in hydrogel inter­
faces (Fig. 3f). The mesh size of hydrogels depends on 
various parameters such as water content and crosslink­
ing density31–33,87. To further increase the diffusivity of 
chemicals, hydrogel interfaces with nanostructures233 
(such as poly(amidoamine) dendrimers), microscopic 

or macroscopic porosity234,235 (such as porous algi­
nate hydrogels), and stimuli responsiveness236 (such as 
poly(N-​isopropylacrylamide)) have also been devel­
oped. Several reviews discuss diffusivity in hydrogel 
interfaces86,87,237,238.

The degradation of hydrogels mostly relies on 
breaking the network building blocks (for example, 
polymer chains or crosslinks) and thus losing mass  
to the surrounding physiological environment. Hence,  
the biodegradability of hydrogel interfaces depends  
on the incorporation of biodegradable building blocks181  
(Fig. 3g, left). The rate of biodegradation can be con­
trolled by engineering the ratio of degradable build­
ing blocks to their non-​degradable counterparts. The 
biodegradation of hydrogel interfaces depends on two 
major mechanisms: hydrolysis and enzymolysis (Fig. 3g, 
right). In wet physiological environments, water drives 
the hydrolysis of ester groups. For example, introducing 
ester groups in the networks produces hydrolytically 
biodegradable hydrogel interfaces, such as oxidized 
alginate239,240 and polyethylene glycol241,242. Hydrogel 
interfaces containing biopolymers can undergo biodeg­
radation via enzymolysis. Cells and physiological fluids 
in the human body are rich in enzymes that can cleave 
and digest various chemical bonds (for example, amide 
groups) in biopolymers such as collagen31, gelatin189,190, 
hyaluronic acid243 and chitosan194–196.

To achieve a high binding affinity to target chem­
icals, binding components such as ligands have to be 
incorporated into the hydrogel interfaces146,175,177,244. 
Hydrogel interfaces developed for the sensing of diverse 
chemicals (for example, glucose or reactive oxygen spe­
cies) or chemical groups in cells (for example, B cells) 
incorporate the corresponding ligands or active func­
tional groups178,245–248 (such as glucose oxidase for glu­
cose and T cells for B cells) into the network. Notably, 
the high binding affinity between drugs and ligands in 
hydrogel interfaces can also be used for the controlled 
release of drugs in the human body175 (for example, poly­
acrylamide hydrogels coupled with the GyrB protein 
used for the triggered release of vascular endothelial 
growth factor)121. Several other reviews address the 
design of hydrogel interfaces for chemical sensing and 
release176,177,246.

Biological properties. Cells adhere to substrates through 
the binding of proteins such as of integrins to ligands 
on the surface249. Hence, incorporating cell-​adhesive 
ligands into hydrogel interfaces provides cell adhesive­
ness. Because various biopolymers in the extracellular 
matrix (such as collagen, gelatin or hyaluronic acid) 
possess integrin-​binding ligands, cells can readily adhere 
to hydrogel interfaces containing these biopolymers31. 
Specific cell-​adhesive proteins (such as fibronectin)250,251 
and peptide motifs (such as arginyl-​glycyl-​aspartic 
acid (RGD))252,253 have also been incorporated for cell 
adhesiveness.

To achieve alow foreign-​body response, hydro­
philic, biomolecule-​functionalized, zwitterionic and 
drug-​releasing surfaces have been introduced to 
hydrogels28,67,188 (Fig. 3h). Hydrophilic surfaces form 
a hydration layer as a result of bonding with water 
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molecules in wet physiological environments254. The  
hydration layer acts as a physical barrier against  
the adhesion of foulants (such as proteins and cells)255. 
Physical barriers against foulants, based on various 
surface-​functionalized biomolecules such as antimicro­
bial peptides256,257, have also been introduced to hydro­
gels. Furthermore, zwitterionic polymers have also been 
widely utilized to form anti-​foreign-​body response 
surfaces75. Poly(phosphatidylcholine), poly(sulfobe­
taine) and poly(carboxybetaine) are the most com­
monly adopted zwitterionic polymers that can form 
hydrogels or that can be grafted to other hydrogel 
networks66,70,73. Apart from various physical barriers, 
drug-​releasing surfaces have been explored to gradually 
elute anti-​foreign-​body response drugs from the surfaces 
of hydrogels258.

Notably, various biologically important functional 
groups can be introduced to hydrogel interfaces to facil­
itate desirable cell or tissue responses (for example, cell 
proliferation or differentiation) beyond cell adhesion 
and anti-​foreign-​body response. Several reviews offer 
more detailed discussions31,81,183,259.

Future perspectives
Recent advances in diverse applications have shown the 
great promise of hydrogel interfaces for the bridging of 
the human body and machines (Fig. 1); however, there 
are remaining challenges and opportunities for future 
developments to effectively achieve this. The importance 
of continued innovations is particularly highlighted by 
the stark limitations in establishing long-​term func­
tional interfaces between implantable devices and the 
human body. Despite tremendous progress in implant­
able devices and hydrogel interfaces for therapeutic, 
diagnostic and assistive applications in recent decades, 
the loss of function and failure of long-​term implants  
in the human body owing to suboptimal integration with  
the target tissues, tissue damage, foreign-​body response 
and/or fibrotic isolation of the implants remain unsolved 
problems4,188. Hence, the development of next-​generation 

hydrogel interfaces should focus on addressing these 
challenges using multidisciplinary investigations and 
rationally guided design rules. In this section, we dis­
cuss future perspectives based on two conceptual 
next-​generation hydrogel interfaces (Fig. 4a,b).

Multimodal hydrogel interfaces. In the human body, 
internal organs are integrated with one another by 
connective tissue to form robust, seamless and multi­
functional interfaces. The internal organs also maintain 
anatomical boundaries without adhesion by serous 
membranes (or serosa) at their outermost surfaces. 
These characteristics provide inspiration for multimodal 
hydrogel interfaces for seamlessly integrated, long-​term 
and multifunctional devices.

For epidermal and wearable applications, multimodal 
hydrogel interfaces can offer multifunctional interfac­
ing between the skin and various sensors and devices. 
For instance, advanced wound dressings may require 
hydrogel interfaces with multiple modes of interaction, 
including mechanical integration to the skin, electrical, 
optical, acoustic and chemical sensing for wound moni­
toring, and chemical delivery of therapeutic substances53. 
For ingestible and minimally invasive applications, mul­
timodal hydrogel interfaces can potentially offer new 
treatment strategies by synergistically combining vari­
ous functionalities. For example, low-​friction, conduc­
tive, transparent and drug-​releasing hydrogel coatings 
on catheters, guidewires or stents may provide electrical 
and/or optical monitoring of the target tissues and deliv­
ery of drugs on top of the conventional clinical treatments 
offered by minimally invasive medical devices260,261. For 
implantable applications, anti-​foreign-​body response 
hydrogel interfaces around the implanted device may 
provide a long-​term functional interface to the human 
body, similar to serosa in organs (Fig. 4a). Similar to con­
nective tissue in organs, bio-​integrative hydrogel inter­
faces between the implanted device and the target tissue 
may provide seamless and multifunctional interfacial 
integration with the human body.

To achieve multimodal hydrogel interfaces, new 
hydrogels with improved properties will be required. 
To minimize the foreign-​body response, hydrogels 
with improved efficacy and longevity in diverse tissue 
environments must be developed. Bio-​integration also 
requires tissue adhesive hydrogels capable of long-​term 
integration to the target tissue without inflamma­
tory responses and subsequent fibrotic encapsula­
tion. Furthermore, there is a need to address potential 
tradeoffs between different properties and functional 
modes of hydrogel interfaces. For example, increasing 
the electrical conductivity of a hydrogel interface often 
leads to less favourable mechanical (such as stretchabil­
ity, fracture toughness and interfacial toughness) and 
optical (such as transparency) properties5.

All-​hydrogel machines. Existing devices are mostly com­
posed of conventional materials, such as metals, plastics 
and elastomers, that are dissimilar to biological tissues. 
By contrast, biological tissues and organs (except teeth, 
nails and bones) are essentially multifunctional struc­
tures fully consisting of hydrogels seamlessly integrating 

a

b
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machine
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Physiological
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Fig. 4 | Next-generation hydrogel interfaces. a | A multimodal hydrogel interface 
providing multifunctional interfacing between a machine (implanted device) and a 
target tissue. b | An all-​hydrogel machine providing a multifunctional interface to a target 
tissue. FBR, foreign-​body response.
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cells and extracellular matrices. Hence, biological tis­
sues and organs not only serve as applicational targets 
but also provide inspiration for all-​hydrogel machines 
(Fig. 4b).

Because of their tissue-​like composition and prop­
erties, all-​hydrogel machines offer promise for the 
improvement of device biocompatibility. Furthermore, 
the absence of conventional materials can potentially 
enable functional devices that are truly transient and 
tissue-​integrative by allowing the ultimate biodegrada­
tion and tissue in-​growth of the all-​hydrogel machine 
without leaving residual materials. Although all-​hydrogel 
machines may benefit a broad range of applications, they 
would be particularly advantageous for implantable 
applications where biocompatibility, degradation and 
tissue integration are critical requirements207.

The realization of all-​hydrogel machines will require 
the development of hydrogels with new and improved 
properties. For example, conductive hydrogels with 
improved electrical properties (such as electrical con­
ductivity and capacitance) and hydrogel waveguides 
with optimized optical properties (such as transmit­
tance and refractive index) must be developed to suc­
cessfully replace existing metal-​based electrodes and stiff 
optical waveguides, respectively. Similar to multimodal 
hydrogel interfaces, bio-​integration and an improved 
anti-​foreign-​body response will be critical to ensuring 
the long-​term functional preservation of all-​hydrogel 

machines in physiological environments. Hydrogels 
with new properties, such as electrically semiconduct­
ing and insulating properties, will require novel materi­
als to replace existing silicon-​based semiconductors and 
plastic-​based or elastomer-​based insulators, respectively. 
Furthermore, synergistically with material developments, 
new and advanced fabrication strategies should be devel­
oped to manufacture future all-​hydrogel machines. 
While various advanced fabrication methods, such as 
photolithography and additive manufacturing, have 
been utilized for individual hydrogel materials, manu­
facturing of all-​hydrogel machines consisting of a broad 
range of hydrogels with diverse functionalities in a highly 
integrated and precise manner would necessitate further 
improvement of existing methods and development of 
new fabrication strategies.

Overall, hydrogel interfaces will play an essential 
role towards the futuristic vision of a seamless merger 
of machines and humans. Despite a promising outlook, 
hydrogel interfaces will undoubtedly face numerous sci­
entific, engineering and translational challenges during 
future development and implementation. However, in 
our wildest imagination, hydrogel interfaces may one 
day allow us to blur the boundary between biological and 
abiotic systems and may enable future human–machine 
hybrids.
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