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hydrophobic substances in a chemically stable manner under
specific physicochemical and biological conditions.20−22 Bio-
polymers are recognized as macromolecules with unique
physicochemical properties, and they are commercially
approved and widely used in industries due to their good
stability, biodegradability and nontoxicity.23 In the food
industry, biopolymers are mainly used in active packaging with
antimicrobial compounds, as well as those associated with the
food organoleptic properties related to taste, micronutrient
content, color, and texture.24−26 Therefore, owing to the
recognized beneficial properties of biopolymers and biosurfac-
tants in food, such as preservation and synergistic interaction
with other ingredients,27−30 biosurfactants encapsulated with
biopolymers could provide a broad spectrum of biological
activities and physicochemical properties, improving the shelf
life and bioactivity of products in several fields of food
industry.31,32

Furthermore, industrial sectors regularly incorporate drying
methods as strategies for preserving products, which can be
integrated with encapsulation techniques to maximize and
facilitate the adoption of biosurfactant innovations by the food
industry.22 This not only contributes to the reduction of
industrial costs along the production chain but also results in an
additional step toward sustainability. Thus, biopolymers and
biosurfactants, natural and sustainable molecules generally
recognized as safe (GRAS),29,33−35 may be part of the strategy
to achieve the sustainable development goals, as well as
contribute to green economy implementation. These innovative
molecules enrich food science with regard to the production,
preservation, and quality control of food products, fostering the
development of food technology.

Consequently, the production of encapsulated biosurfactants
with biopolymers may be easily adopted by current industrial
practices by using bioreactors and drying systems. This would
foster the addition of these biotechnological additives for food
production, leading to added value food products for conscious
consumers concerning food quality, safety, and sustainability
(Figure 1).

Although encapsulated biosurfactants open the opportunity
to improve food products, encapsulation of biosurfactants for
the food industry has not been reported. Thus, further studies
should explore the applications and benefits of encapsulated
biosurfactants in food. In order to achieve this goal, some
challenges need to be overcome, especially concerning
regulations, registrations, and guidelines that determine the
limits of consumption or dosage of biosurfactants in foods.36,37

In this sense, this Review addresses the promising advantages
and potential challenges of using microbial biosurfactants
encapsulated with natural polymers in the food industry. It
presents the different types of biosurfactants and natural
polymers, as well as encapsulation techniques; the benefits
that the addition of biosurfactants can bring to food products;
and case studies that evaluated the metabolic effects of
biosurfactants in animal models. The aim is to highlight the
feasibility of using encapsulated biosurfactants in the food
industry, leading to insights that may contribute to the
regulation of the use of these microbial surfactants, as well as
to provide technological innovation and sustainability for the
food industry, ensuring environmental and social safety.

■ AMPHIPHILIC MOLECULES AND ENCAPSULATION
TECHNIQUES

The amphiphilic feature of biosurfactants is essential in chemical
compositions that require hydrophilic−lipophilic balance,
critical micellar concentration, and chemical charges associated
with hydrophilic head groups.6,38 Thus, biosurfactants synthe-
sized by microorganisms constitute unique molecular com-
pounds that are classified into the following categories: complex
lipoproteins, proteins, lipopolysaccharides, polysaccharides, and
high-molecular-weight biopolymers; low-molecular-weight
phospholipids, glycolipids and lipopeptides; and neutral lipids,
fatty acids, and particulate compounds that constitute other
types of biosurfactants (Table 1).39−42

Microbial biosurfactants are biosynthesized in different ways
on the cell surface or by intracellular pathways with further
extracellular secretion. These routes can be combined
subsequently, producing surfactants via new synthesis or

Figure 1. Production and application of a biosurfactant encapsulated with a biopolymer on an industrial scale for food products.
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Table 1. Molecular Structure and Biological Activity of the Main Groups of Biosurfactants Produced by Microorganisms
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Table 1. continued
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through substrate-derivative compounds.43,44 Several species of
bacteria, yeasts, and fungi are able to utilize alternative

substrates, such as agro-industrial residues, food residues, and
other residues, for growth in fermentation processes, producing

Table 1. continued
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a variety of metabolites. Generally, biosurfactants are classified
based on their microbial origin and molecular structure. These
surface-active molecules are employed in various research and
industrial processes, constituting green alternatives due to their
lower toxicity and sustainable character when compared to
synthetic surfactants.38,42,43

Regarding their physicochemical and biological properties,
biosurfactants adjust to shifting environmental conditions, like
pH and temperature. Moreover, their performance may be
improved in formulations combining biosurfactants and
polymeric substances extracted from natural sources. Natural
polymers present significant status in the industrial market due
to their organic nature, unlike petroleum-derived synthetic
polymers, which can release toxic byproducts during the
degradation process.79−81 Biopolymers are frequently used as
encapsulating agents, requiring physicochemical comprehen-
sion of the interaction between the active ingredients and the
structured matrix, controlled release of the active ingredients,
and matrix stability.23 Carbohydrates, proteins, and lipids are
generally recognized as safe (GRAS) wall materials and present
biodegradable origin and several functional physicochemical
properties for food storage, consumption, and processing
systems. Thus, micro/nanoencapsulations obtained by different
processes, such as coacervation and spray-drying, result in
several colloidal structures formed by repeated units of
monomeric chains of biopolymers. These macromolecules
have important properties, such as biodegradability, biocompat-
ibility, thermal stability, adsorption capacity, and antibacterial
and antifungal activities, that are recognized by the pharma-
ceutical, food, textile, and biomedical industries and other
sectors.23,26,79

Biosurfactants, mainly rhamnolipids and sophorolipids, both
in their free form and associated with biopolymers, have been
assessed in the development of nanosystems with the aim of
delivering lipophilic bioactive compounds. In these systems,
dyes, vitamins, proteins, and polysaccharides were encapsulated
in nanoemulsions, solid lipid nanoparticles, and nanostructured
lipid carriers for application in the cosmetic, food, and
pharmaceutical industries.82−94 Noteworthy, Arif95 developed
a chitosan nanoparticle system for the delivery of rhamnolipids
and antimicrobial activity against the pathogenic bacterium
Helicobacter pylori, which is responsible for stomach infections.
The chitosan−rhamnolipid system showed a satisfactory
encapsulation efficiency of 73.1% and an average size of 217
nm with a synergistic antimicrobial effect, which inhibited the
biofilm by 98%. Stable chitosan nanoparticles with rhamnolipids
and sophorolipids were demonstrated by Bettencourt96 through
the ionic gelation incorporation technique. The chitosan
nanoparticle formation was confirmed by attenuated total
reflectance spectroscopy (FTIR-ATR), and a higher encapsu-
lation efficiency was described for the rhamnolipid system due to
molecular differences between the two biosurfactants. Rhamno-
lipids and sophorolipids obtained encapsulation efficiencies of
74.2% and 41.1% with medium-sized nanoparticles of 329.6 and
210.0 nm, respectively. The results indicated the adequate
cytocompatibility of both nanoparticles with human dermal
fibroblast cell (AG22719) cultures and a better synergistic
antimicrobial effect between the chitosan nanoparticle and
rhamnolipids to fight the pathogenic bacterium Staphylococcus
aureus and biofilm inhibition.

So far, there are few studies reporting the use of biopolymers
as encapsulation matrixes for biosurfactants (Figure 2). Usually,
patents and scientific papers describe the immobilization of

microbial cells that produce biosurfactants, such as Starmerella
bombicola, Bacillus subtilis, and Bacillus licheniformis, in
polymeric alginate matrices in order to demonstrate the
feasibility of continuous cultivation of these microorganisms
and their potential use as biocatalysts in industries.97−100

However, studies have evaluated the association of microbial
biosurfactants with biopolymers (alginate, gelatin, and chitosan)
in various formulations like hydrogels, toothpastes, bioremedia-
tion complexes, and wafer-based dressings and in the develop-
ment of stable emulsions, which showed improved mechanical,
rheological, antimicrobial, and medicinal properties.101−105

Encapsulation can improve the functional properties of the
biosurfactants. Thus, the use of biopolymer matrices (Table 2)
as enveloping systems of biosurfactants for the food sector is a
promising approach, since the control and release of these active
compounds can help combat pathogenic microorganisms and
mycotoxin-producing fungi, as well as prevent lipid oxidation
and adsorption of byproducts that affect food taste and odor.
The addition of encapsulated biosurfactants in dry powder form
offers ease of application in food processing. Besides, these
biopolymer−biosurfactant systems are viable alternatives to
replace synthetic additives and preservatives commonly
employed in the food industry.28,106−108

The combination of biosurfactants and natural synthetic
polymers has been studied, showing that these systems are
characterized by secondary interactions between the different
congeners of the biosurfactant and the polymer employed.
These interactions allow researcher to identify how these
systems work as hydrogel scaffolds and as vehicles for drug
administration.152 Studies involving glycolipid biosurfactants
with natural polymers have indicated hydrophobic interactions
between silk fibroin and the fatty acid chains of sophoroli-
pids.153−155 Chitosan showed an electrostatic interaction
between its NH3

+ groups and the COO− groups of the
sophorolipids.156 Alginate, carboxymethylcellulose, and zein
formed ternary sophorolipid nanoparticles through hydro-
phobic effects, electrostatic interactions, and hydrogen
bonds.157 The rhamnolipid and alginate chains showed
hydrophobic interactions, and the glycolipid COOH groups
worked as calcium ion capture sites.158 Chitosan and polymalic
acid showed electrostatic interactions with rhamnolipids.95

Lipopeptide biosurfactants demonstrated charge-based inter-
actions, highlighting the interaction between the negative charge
of lipopeptides and the positive charge of chitosan.159 Surfactin
formed bonds between its carboxyl group and the amine group
of chitosan.160

Figure 2. Biopolymer as a biosurfactant encapsulation matrix.
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Table 2. Main Biopolymers Used as an Encapsulation Matrix in the Food Sector
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Table 2. continued
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Biosurfactants show a remarkable ability to adapt to different
temperature and pH conditions, characteristics defined by the
particle’s development method and techniques of material
preparation.30,152 This biosurfactant flexibility can open up new
opportunities to improve nano/microcapsules regarding their
application effectiveness, allowing the development of more
innovative and efficient processes. Several encapsulation
techniques are extensively employed and investigated in the
food industry. It is possible to choose and associate the most
appropriate encapsulating agents and methods by evaluating the
properties of the solid or liquid food ingredients. This process
may ensure greater viability and stability for the delivery and

release of food actives, providing better quality and performance
of final products.23,24,79,147

Although the encapsulation of biosurfactants has no
application in food industry yet, it has been tested in fields
such bioremediation and pharmacology.161,162 PEGylated
(PEG) poly(lactide-co-glycolide) (PLGA) nanocapsules were
employed to encapsulate sophorolipids via the nanoprecipita-
tion method. Pharmaceutical formulations resulted in particle
sizes from 117.5 to 196.5 nm, and the encapsulation efficiency
improved significantly from 68.8% in PLGA to 92.18% in 10%
PEG−PLGA. In vitro release profiles reached 70%, 90%, and

Table 2. continued
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Table 3. Main Encapsulation Technologies Used in the Food Industry to Encapsulate Lipophilic/Amphiphilic Molecules
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97% over 72 h depending on the percentage of PEG in the
formulations, which was related to burst release.162

The main encapsulation technologies used in the food
industry for hydrophobic or amphipathic molecules are detailed
in Table 3. Each technique plays a crucial role in the
encapsulation process, providing specific advantages and
contributing to quality and efficacy of food products. Capsules
loaded with actives/ingredients can vary in size; consequently,
they are classified as microcapsules for the size range between 1
and 800 �m and nanocapsules for dimensions ranging from 1
nm to 1 �m. 23,163−165

The amount of the active/ingredient encapsulated by the
matrix depends on the method used and is assessed by means of
encapsulation efficacy indicators, such as encapsulation rate and
release features. These analyses allow researchers to evaluate the
process efficiency, ensuring that the amounts of encapsulated
active/ingredient are appropriate for final formulation.178,182

Encapsulation in food products has numerous advantages. In
addition to enabling nutrient supply, this technique allows the
creation of functional products that activate physiological
responses, leading to disease prevention. Therefore, food
technology in collaboration with food industries presents several
possibilities of improvements and innovative products, which
have yet to be fully explored. Biosurfactants represent promising
molecules from natural sources that free of chemicals and
characterized by high nutritional value, interesting for the
development of green and attractive products for conscious
consumers. Thus, the following section describes the bio-
technological applications of biosurfactants and their significant
role in the safety and integrity of food products.4,183,184

■ BIOTECHNOLOGICAL APPLICATION OF
BIOSURFACTANTS IN THE FOOD INDUSTRY:
SAFETY AND INTEGRITY ANALYSIS OF FOOD
PRODUCTS

Food safety and integrity remain concerning topics. According
to the Food and Agriculture Organization (FAO) of the United
Nations, 4 billion tons of food are annually produced to meet the

population demand. Therefore, food industries often use
synthetic food additives, such as emulsifiers, colorings, chemical
preservatives, curing salt, and flavoring agents, among others, in
order to increase the shelf lives of food products.4,185

Nevertheless, biological, physical, and chemical changes
commonly occur during the process of food conservation and
storage, resulting in nutritional, organoleptic, and economic
losses. In addition, these alterations can represent poisoning and
contamination sources due to pathogens and the high
concentration of chemicals present in daily meals. These issues
result in negative perceptions by consumers and a loss of trust,
leading to a preference for highly nutritious, organic, and
chemical-free foods.4,28,184

Hence, the use of biosurfactants offers a number of benefits
for food products due to their unique and environmentally
friendly physicochemical and biological properties such as

1. Emulsifier: to form and stabilize emulsions, allowing the
mixing of ingredients that normally would not mix, such as
oil and water products like sauces, mayonnaise, and
creams.186

2. Surface-active agent: the amphiphilic nature allows the
solubilization of lipophilic and hydrophobic substances in
an aqueous medium, improving the bioavailability of
some nutrients and bioactive compounds in food.187

3. Humectant: to retain moisture in food, maintaining its
freshness, texture, and quality for longer periods.25

4. Foaming agent: to create and stabilize foams in products
such as ice cream, mousses, and souffleś, improving their
texture and presentation.39

5. Antimicrobial activity: to inhibit the growth of
undesirable microorganisms in food, prolonging its shelf
life and ensuring its safety.188

6. Antiadhesive: to prevent surface sticking during process-
ing and storage.81

The aforementioned physicochemical and biological features,
in addition to the multifunctional advantages of biosurfactants,
are able to contribute to different processes and/or sectors of the
food industry, allowing applications such as

Table 3. continued
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1. Active packaging: to improve barrier properties, extend
food shelf life, and reduce waste.25,189

2. Formulation ingredients: to improve the texture,
stability, and homogeneity of food products.39

3. Preservatives: to provide antimicrobial activity against
bacteria and fungi and extend product shelf life.28,190

4. Food processing: added to various stages of food
processing, such as the production of emulsions, the
dispersion of ingredients, and cleaning of equipment and
surfaces.191

Noteworthy, the production of a bread based on sopho-
rolipids improved the physical properties of wheat flour dough,
resulting in increased durability of the product.192 Moreover,
total or partial replacement of vegetable fat by a biosurfactant in
cupcakes did not affect the quality of the final product, allowing
nutritional improvement of flour, greater stability for emulsions,
and antioxidant activity.193 Another study highlighted the use of
rhamnolipid in various baking applications and its improvement
of dough stability, shape, and volume.194

An investigation conducted with muffins revealed that
concentrations of 0.5% and 1% of the lipopeptide biosurfactant
MSA31 (from actinobacterium strain Nesterenkonia sp.) added
antioxidant activity to the product and antibiofilm capacity
against S. aureus. Furthermore, MSA31 worked as an emulsion
stabilizer, improving the muffins’ softness and sensory
qualities.195 Also, sensory analysis assessed the addition of
biosurfactant B. subtilis SPB1 (0.1%) as an emulsifier in cookies
formulated with sesame shell flour instead of wheat flour,
showing texture improvement when compared to commercial
emulsifier glycerol monostearate.196

Chicken sausage formulations were developed with sopho-
rolipids (0.008−0.06%),27 and the authors reported the
antimicrobial action of the biosurfactant against Clostridium
perf ringens contamination, as well as its antioxidant effect in
preventing lipid oxidation. In addition, substitution of the usual
preservatives by sophorolipid had a positive impact on the
technological properties and texture profile of the chicken
sausages.

Moreover, renewable films for the poultry industry produced
with sophorolipid showed antimicrobial properties against
Listeria monocytogenes, S. aureus, and Salmonella sp.189,197

Bioactive films containing sophorolipids and fructooligosac-
charides, as reported by Caretta,25 improved the quality and
extended the shelf life of strawberries, in addition to exhibiting
antimicrobial activity and prebiotic properties. Silver nano-
particles with sophorolipids, spherical shape, uniformity, and an
average size of 61.46 nm were also developed and incorporated
into starch nanocomposite films, showing antimicrobial activity
against Escherichia coli and Staphylococcus aureus.197

These studies emphasize the potential of biosurfactants to
replace conventional ingredients, indicating their role in
biotechnological innovation in food technology. Improvements
concerning sustainable and safe food products, like palatability,
nutritional content, quality, and shelf life, through the
encapsulation of biosurfactants with natural polymers reveal a
promising future not only for the food industry but also for the
entire industrial sector. Encapsulation favors the use and
application of biosurfactants and also represents an important
alternative for a paradigm shift toward a green economy, leading
to a sustainable global carbon production. Therefore, discussing
the implementation and regulation of biosurfactants in the food
industry is crucial in order to ensure the safety, quality, and

innovation of food products. In this context, clear and
transparent guidelines should be established by regulatory
agencies to promote consumer confidence, ensuring liability for
the production and commercialization of safe food products.

■ REGULATORY ASPECTS OF THE USE OF
BIOSURFACTANTS AND ENCAPSULATES IN THE
FOOD SECTOR

The application of biosurfactants as new biotechnological
additives in the food sector is still classified as an investigative
study. As of now, there are no regulations, registries, and
guidelines that determine the consumption or dosage limits for
biosurfactants in food, as specified by the World Health
Organization (WHO) and the U.N. Food and Agriculture
Organization (FAO).4,37,49

Many studies have already elucidated the metabolic,
biochemical, physiological, and pathological effects of bio-
surfactants at different concentrations on the health of
experimental animals. Kwak198 submitted 1 day old broiler
chicks to a dietary treatment with sophorolipids and zinc
bacitracin for a period of 35 days at concentrations of 250 and
100 ppm, respectively. According to the authors, chicks
supplemented with both molecules showed an improvement
in body weight. Blood parameters such as uretic nitrogen, serum
glucose, and cholesterol levels, as well as total energy
digestibility levels, histopathological analyses (duodenum and
ileum), and even the gene expression for nutrient and protein
transporters, did not differ compared to the control. The only
parameters that showed statistical differences were total
triglyceride levels and glucose transporter levels (GLUT2 and
SGLT1, respectively), which were higher in the treated chicks.
Supplementation with sophorolipids increased jejunal villi and
reduced inflammatory cytokine IL-1� when compared to
controls. The authors concluded that sophorolipids and
bacitracin promoted the growth and modulation of cecal
microbial composition in chicks. Therefore, sophorolipid
supplementation increased the glucose utilization capacity,
upregulated the relative expression level of glucose transporter
and intestinal morphological index, and reduced inflammation
in the jejunum.

In the experiment conducted by Campos,186 the micro-
organism Candida utiliz was used to synthesize a biosurfactant,
which was evaluated with regard to its in vivo toxicity in rats, in
addition to its emulsification capacity in mayonnaise. The
biosurfactant, consisting of 65.88% lipids and with a total caloric
value of 646.88 kcal/100 g, was added to the rats’ diet at a daily
dose of 25 g over 21 days. In addition, 0.7% of the biosurfactant
was used as a food additive in six mayonnaise formulations. The
authors concluded that the biosurfactant did not demonstrate a
toxic effect, since the rats showed no changes in liver and kidneys
weights. Additionally, the formulation composed of gum agar
and biosurfactant was the only one capable of stabilizing the
mayonnaise emulsion.

Sahnoun199 investigated the toxicological effect of the
biosurfactant lipopeptide SPB1 administered by intraperitoneal
injections in male mice with 50% of lethal doses (LD50) for 3
days and subacute doses for 4 weeks. According to the authors,
mice mortality occurred dose-dependently when the dose
reached 475 mg/kg of body weight after 3 days of injection.
Subacute dosages showed that concentrations higher than 47.5
mg/kg of body weight led to increased alanine transferase
activity and liver cell necrosis, while daily intakes of doses lower
than 47.5 mg/kg of body weight did not modify the
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hematological parameters or the serum biochemical results.
Concerning oral toxicity, the authors administered a dose of
approximately 2,000 mg/kg of crude lipopeptide by intragastric
tube, which also appeared to be harmless. Therefore, the authors
concluded that the biosurfactant lipopeptide SPB1 can be used
as a food, cosmetic, and pharmaceutical additive.

Table 4 summarizes some case studies that administered
different concentrations and types of biosurfactants in

experimental animals. These studies allow us to understand
the impacts and benefits that biosurfactants can have on both
health and the environment. In addition, it provides previous
dosages of these biosurfactants and their effects at acute, chronic,
subchronic, and lethal levels, which are important to establish
registrations, regulations, and safety guidelines that include the
production system, as well as ecological and health spheres.

Table 4. Some Case Studies That Administered Different Concentrations and Types of Biosurfactants in Experimental Animals

biosurfactant
experimental

test concentration routes of administration analyses performed authors’ conclusion

rhamnolipids200 1 day old Arbor
Acres broiler
chickens

100 mg/kg
(low)

dietary supplementation for
42 days

•growth performance safety tests and results with rhamnolipids for
the United States Environmental Protec-
tion Agency; authors suggest the addition of
biosurfactant in poultry feed

1000 mg/kg
(high)

•nutrient digestibility
•slaughter yield
•serum biochemistry profile
•liver lipid metabolism
•gene expression

rhamnolipids201 1 day old Linnan
yellow broiler
chickens

500 mg/kg dietary supplementation for
56 days

•growth performance dietary supplementation with rhamnolipids
improves growth performance, benefits
intestinal villus morphology, regulates host
immune function, and increases intestinal
volatile fatty acid content and relative
abundance of gut microbiota in broilers

1000 mg/kg •microflora of cecal content (16S
rRNA sequencing)

•serum immunological indices
•jejunal morphological analysis
•volatile fatty acids

rhamnolipids202 1 day old Linnan
yellow broiler
chickens

500 �g/kg dietary supplementation for
56 days (1000 mg/kg)
and intraperitoneal ad-
ministration on days 57,
59, and 61 (500 �g/kg)

•growth performance rhamnolipid supplementation played a role in
growth and relative abundance of cecal
microbiota, including the reduced lip-
opolysaccharide-induced immune stress in
broilers

1000 mg/kg •microflora of cecal content (16S
rRNA sequencing)

•serum immunological indices
•jejunal morphological analysis
•short-chain fatty acids

sophorolipids203 in vitro with HT-
29 cell line and
in vivo with 14
day old
Sprague−
Dawley rats

1, 5, and 25
�g/mL (in
vitro)

dietary treatment for 16
days

•wound healing sophorolipid improves jejunal permeability
and the intestinal defense system, as well as
cecal microbiota and AGCC levels; this is
the first trial using sophorolipid as a food
additive and nutritional strategy aiming to
overcome early weaning syndrome

10 ppm (in
vivo)

•intestinal permeability test
•jejunal histology
•cecal bacterial populations
•cecal short chain fatty acids

(AGCC)
sophorolipids204 adult Sprague−

Dawley rats
therapeutic

dose:
5 mg/kg

intra-abdominal sepsis was
induced and biosurfactant
was applied for 3 days via
caudal injection; the
doses of toxic effect were
injected into the inferior
vena cava after ligation
and cecal puncture

•lung histopathology administration of sophorolipids after induc-
tion of intra-abdominal sepsis improved
survival, as there was a reduction in sepsis-
related mortality with different dosing
regimens; in addition, toxicity was evi-
denced at 75−150× the therapeutic dose in
septic animals

toxic dose:
375−750
mg/kg

•survival profile

sophorolipids205 adult Sprague−
Dawley rats

200 mg/kg after the rats were exposed
to a diet rich in fat and
cholesterol for 8 weeks,
the sophorolipid extracts
were administered orally
for 4 weeks

•blood biochemical parameters describe reductions in total cholesterol, low-
density lipoprotein cholesterol, atherogenic
index, hepatic transaminase activity, and
malondialdehyde activity, which were cor-
roborated by histopathology; in addition,
the sophorolipids were considered a
powerful hypocholesterolemic compound
in relation to rosuvastatin

•liver, kidney, heart, and brain
histopathology

Bacillus subtilis SBP1206 adult Wistar rats 10 mg/kg after the rats were exposed
to diabetic complications
by the alloxan solution,
the biosurfactant was ad-
ministered via gastric
gavage for 1 month

•hematological examinations Hypoglycemic and antilipidemic activities
exhibited by the biosurfactant Bacillus
subtilis were effective after diabetes induced
by alloxan solution

•pancreas, kidney, liver, and small
intestine histopathology

•biochemical parameters

lipopeptide207 adult Wistar rats 1 mg/mL asthmatic rats received 1
mg/mL of lipopeptide
intraperitoneally for 7
consecutive days

•lung histopathology lipopeptide showed an effect in treatment of
asthma by reducing histological changes,
inflammation, and oxidative stress

•oxidative stress and inflamma-
tion markers

phospholipopeptide208 Mossambique
tilapia (Oreo-
chromis mos-
sambicus)

2, 20 × 10200

mg/kg
the biosurfactant was ad-

ministered from 0.2 mL of
water-soluble fraction for
20 days

•lysozyme significant improvement of specific and non-
specific immunity and resistance of the fish
against the pathogen Aeromonas hydrophila

•antiprotease
•peroxidase total
•antibacterial assay
•specific immune response
•disease resistance test
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A concrete example of food additive regulation is related to
the use of surfactants belonging to the polysorbate family. These
synthetic surface-active molecules derived from ethoxylated
sorbitan are esterified with fatty acids and are widely used in the
pharmaceutical, cosmetic, and food industries, aiming to
solubilize hydrophobic ingredients in water-based products.
Although polysorbates are not considered toxic, cases of skin
and eye irritation as well as aquatic toxicity associated with their
use have been reported. Thus, the European Food Safety
Authority (EFSA) published a re-evaluation for the use of
several food additives, including polysorbate 20 (polyoxy-
ethylene monolaurate (20) sorbitan), polysorbate 40 (polyoxy-
ethylene monopalmitate (40) sorbitan), polysorbate 60
(polyoxyethylene monostearate (60) sorbitan), polysorbate 65
(polyoxyethylene (65) sorbitan tristearate), and polysorbate 80
(polyoxyethylene monooleate (80) sorbitan). After long-term
carcinogenicity studies in rats, No Observed Adverse Effect
Level (NOAEL) was considered equivalent to 2,500 mg/kg of
body weight/day. Subsequently, the Joint FAO/WHO Expert
Committee on Food Additives (JECFA) established an
Acceptable Daily Intake (ADI) of 25 mg/kg of body weight/
day, while the Scientific Committee on Food (SCF) approved
an ADI of 10 mg/kg of body weight/day.36,209−211

Therefore, regulations and guidelines are necessary to address
the specifications for uses of biosurfactants in industrial
applications as well as potential adverse effects, which must be
supervised to ensure the safety of consumers and the
environment. In addition, comprehension of specific properties
of each biosurfactant helps to define usage rates to minimize
potential risks and indicates the need for multidisciplinary
approaches to monitor and mitigate possible negative impacts
that surface-active molecules could trigger.36,37

The use of encapsulated biosurfactants as ingredients for the
food industry has not been explored to date. Nevertheless, this
investigation is urgent for the development of the topic. Present
literature focuses primarily on findings to incorporate
biosurfactants in their free form into foods. As a result, the
food industry and technologies can make significant progress
using microbial surfactants, either in their free form or
encapsulated in biopolymers. These natural surfactants offer
feasible alternatives to replace synthetic surfactants and
preservatives, which are associated with toxicity, allergenicity,
and even carcinogenicity risks. Thus, microbial biosurfactants
represent a biotechnological innovation in the food industry
intended to establish safe and sustainable processes to improve
the quality of food products, benefiting both people and the
environment. Likewise, encapsulation with biopolymers pro-
vides viability for industrial uses, since these capsules may be
offered in dry powder form. Dried powder encapsulated
biosurfactants allow for improved food processing and storage
in addition to protecting biosurfactants against harsh environ-
mental conditions, ensuring their use and stability. Drying,
especially through spray dryers, is a widely adopted practice for
various ingredients in the food industry. This technique
facilitates the integration of the biopolymer−biosurfactant
system, leading to cost savings throughout the production
chain. Finally, biosurfactants and biopolymers are biodegradable
and sustainable molecules aligned with the principles of a green
economy.
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